三年级数学下册知识点归纳总结

时间:2024-02-06 06:57:54 热门总结 我要投稿
  • 相关推荐

三年级数学下册知识点归纳总结

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能帮我们理顺知识结构,突出重点,突破难点,不妨让我们认真地完成总结吧。我们该怎么写总结呢?以下是小编为大家收集的三年级数学下册知识点归纳总结,仅供参考,希望能够帮助到大家。

三年级数学下册知识点归纳总结

三年级数学下册知识点归纳总结1

  多位数乘一位数

  1、估算。

  (先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、因数末尾有几个0,就在积的末尾添上几个0。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数

  5、(关于“大约)应用题:

  ①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

  ②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

  ③条件和问题中都有“大约”,求近似数,用估算。→(≈)

  分数的初步认识

  1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的.几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ②1与分数相减:1可以看作是分子分母相同的分数。

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  长方形的周长=(长+宽)×2正方形的周长=边长×4

三年级数学下册知识点归纳总结2

  位置与方向

  1、①(东与西)相对,(南与北)相对,

  (东南—西北)相对,(西南—东北)相对。

  ②清楚以谁为标准来判断位置。

  ③理解位置是相对的,不是绝对的。

  2、地图通常是按(上北、下南、左西、右东)来绘制的。

  (做题时先标出北南西东。)

  3、会看简单的路线图,会描述行走路线。

  一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

  4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

  5、生活中的方位知识:

  ①北斗星永远在北方。

  ②影子与太阳的方向相对。

  ③早上太阳在东方,中午在南方,傍晚在西方。

  ④风向与物体倾斜的方向相反。

  (刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

  除数是一位数的除法

  1、除数是一位数的除法计算方法:从被除数的位除起,先看被除数的`位,如果不够除,就看前两位,除到被除数的哪一位就把商写在哪一位的上面,余数要比除数小。

  2、没有余数时:被除数=商×除数。有余数时:被除数=商×除数+余数。

  3、“0”不能做除数,做除数没有意义,0除以任何不是0的数都得0。

  4、想:商中间有0的除法,在什么情况下商中间才有0?

  商末尾有0的除法,在什么情况下商末尾才有0?

  特殊统计图:

  当数据比较大而且各个数据间的差距比较小的时候,为了反映这组数据的差异性,我们用起始格表示比较大的数量,而其他格表示较小的数量的统计图,我们称之为“特殊统计图”。

  1、分析统计图时首先要清楚横轴和纵轴各表示什么,每格代表多少。

  2、平均数=总数量÷总份数。

  3、平均数能较好地反映一组数据的总体情况。

  4、在计算平均数之前,要注意先估一估平均数的范围应该大约是多少,然后再进行计算,在算各个数据的总和时,应注意算2次以上以保证计算结果的准确性。

三年级数学下册知识点归纳总结3

  (一)年、月、日部分

  1、一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。

  2、记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二七九。7个大月,4个小月,二月平年28天,闰年29天。

  3、平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。

  4、闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。

  5、公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、20xx、2400等是闰年。

  6、连续两个月共62天的是:7月和8月,12月和第二年的1月;

  一年中连续两个月共62天的是:7月和8月。

  7、一个人今年20岁,但只过了5个生日,他是2月29日出生的。

  8、计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到20xx年10月1日,是中国成立(59)周年。用20xx-1949=59周年

  (二)24时计时法部分

  1、年月日、时分秒都是时间单位。

  2、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

  3、1日(天)=24小时;1小时=60分;1分=60秒

  4、求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。

  5、认识时间与时刻的区别。

  如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

  再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。

  又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  6、经过的天数的计算:

  公式:结束时间—开始时间+1=经过的天数

  例如:6月12到6月30日是多少天?(30-12+1=19天)

  数学学习方法

  主动预习

  新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

  如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

  抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  思考是数学学习方法的核心

  一些孩子对公式、性质、法则等背的'挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。

  如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”

  孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。

  数学求倒数地方法

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

三年级数学下册知识点归纳总结4

  第一单元《位置与方向》

  1.相对的方向:南←→北,西←→东;西北←→东南,东北←→西南

  2.地图上的方向:上北下南,左西右东。

  实际方向:面北背南,左西右东。

  3.指南针可以帮助我们辨别方向。

  4.看简单路线图的方法:先要确定好自己所处的位置,以自己所处的位置为中心,再根据上北下南,左西右东的规律来确定目的地和周围事物所处的方向,最后根据目的地的方向和路程确定所要行走的路线。

  5.描述行走路线的方法:以出发点为基准,再看哪一条路通向目的地,最后把行走路线描述出来(先向哪走,再向哪走),有时还要说明路程有多远。

  6.绘制简单示意图:先确定好观察点,把选好的观察点画在平面图中心位置,再确定好各物体相对于观察点的方向。在纸上按“上北下南、左西右东”绘制,用箭头“↑”标出北方。

  (描述是要注意是选取哪个物体作参照物的,选取的参照物不同,描述的结果也不一样。)

  第二单元《除数是一位数的除法》

  (一)口算除法

  1.整千、整百、整十数除以一位数的口算方法。

  (1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。

  (2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。

  2.三位数除以一位数的估算方法。

  (1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。

  (2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。

  (二)笔算除法

  1.牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。

  (除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用“0”占位。每一次除得的余数必须比除数小。)

  2.会判断商是几位数。

  比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。

  3.除法的验算方法:

  (1)没有余数的除法:商×除数=被除数;

  (2)有余数的除法:商×除数+余数=被除数;

  4.关于0的一些规定:

  (1)0不能作除数。

  (2)相同的两个数相除商是1。(既然能相除这个数就不是0)

  (3)0除以任何不是0的数都得0;0乘任何数都得0。

  5.乘除法的估算:4舍5入法。

  如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。

  除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60。

  第三单元《统计》

  1.会看横向条形统计图及起始格与其他格代表的单位量不一致的条形统计图。能根据统计表中的数据完成统计图,完成的统计图上一定要标数据。

  2.能根据统计图表进行分析,解决简单的实际问题(应用题)。能根据统计图、表提出简单的问题,并进行解答。

  3.能根据统计图、表中的内容进行简单的数据分析提出合理化的建议。

  4.理解平均数的含义,给出一组数据会求它们的平均数。(若干数相加的和,除以这些数的个数,所得的结果叫算术平均数,简称平均数。求平均数分为两步,首先求出若干数的和,再用所求的和除以这些数的个数。)如:3个女生身高:135厘米、140厘米、132厘米,求平均身高。熟记平均数的格式,总数量除以总份数:(++……+)÷并脱式计算p42。会检查平均数的对错,平均数一定介于最大数与最小数之间。

  5.会用平均数来比较两组数据的总体情况。

  6.给出平均数和几个数据,求另一个数据。如:小明三科成绩的平均分是85分,其中外语83分,数学80分,求语文多少分。

  第四单元《年月日》

  (一)年、月、日部分

  1.一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。

  2.记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二八九。7个大月,4个小月,二月平年28天,闰年29天。

  3.平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。

  4.闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。

  5.公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。

  6.连续两个月共62天的是:7月和8月,12月和第二年的1月;

  一年中连续两个月共62天的是:7月和8月。

  7.一个人今年20岁,但只过了5个生日,他是2月29日出生的。

  8.计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59)周年。用2008—1949=59周年

  (二)24时计时法部分

  1.年月日、时分秒都是时间单位。

  2.在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

  3.1日(天)=24小时;1小时=60分;1分=60秒

  4.求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。

  5.认识时间与时刻的区别。

  如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

  再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。

  又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  6.经过的天数的计算:

  公式:结束时间—开始时间+1=经过的天数

  例如:6月12到6月30日是多少天?(30—12+1=19天)

  第五单元《两位数乘两位数》

  (一)口算乘法:

  1.整十、整百、整千相乘的方法:先用0前边的数相乘,得到一个结果,然后再数一数被乘数和乘数中一共有多少个0,再在结果的后边添上多少0。

  2.估算:想被乘数和乘数最接近或等于哪个整十的两位数,那么所要估算的结果就是这两个整十数的乘积。

  (二)笔算乘法:注意竖式的格式。

  两位数乘两位数在笔算时,首先要相同数位对齐,用下面因数的个位数和十位数依次去乘上面因数的个位数和十位数,将所得的积相加。(遇到进位乘法时,那一位上的乘积满几十就向前一位进几)

  1、两位数乘两位数积可能是(三)位数,也可能是(四)位数。

  2、验算:交换两个因数的位置。

  第六单元《面积》

  1.物体的表面或封闭图形的大小,就是他们的面积。

  2.比较两个图形面积的大小,要用统一的面积单位来测量。

  3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。

  4.边长1厘米的正方形面积是1平方厘米。

  5.边长1分米的'正方形面积是1平方分米。

  6.边长1米的正方形面积是1平方米。

  7.边长100米的正方形面积是1公顷(10000平方米)。

  8.边长1千米(1000米)的正方形面积是1平方千米。

  9.测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。

  平方千米公顷平方米平方分米平方厘米

  10.长方形的面积=长×宽长=面积÷宽宽=面积÷长

  11.正方形的面积=边长×边长

  12.长方形的周长=(长+宽)×2宽=周长÷2-长长=周长÷2-宽

  13.正方形的周长=边长×4

  14.正方形的边长=周长÷4

  15.相邻的两个常用的长度单位间的进率是10。

  16.相邻的两个常用的面积单位间的进率是100。

  17.1平方米=100平方分米;1平方分米=100平方厘米;

  1公顷=10000平方米;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100。)

  注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的面积、江河湖海的面积)等一般情况下填平方千米。

  面积相等的两个图形,周长不一定相等。

  注意:

  周长相等的两个图形,面积不一定相等。

  第七单元《小数的初步认识》

  小数的意义

  把1个整体平均分成10份、100份、1000份……这样一份或几份可以用分母是10、100、1000的份数来表示,也可以依照整数的写法写在整数个位右面,用圆点隔开来表示十分之几、百分之几、千分之几……的数,叫做小数。

  小数的数位

  小数点的左边是它的整数部分,小数点的右边是它的小数部分。小数的计数单位是十分之一、百分之一、千分之一……按照一定的顺序排列起来。

  1.把1米平均分成10份,每份是1分米;用米作单位是1/10米,也是0.1米。3份就是3分米、3/10米、0.3米。

  2.把1米平均分成100份,每份是1厘米;用米作单位是1/100米,也是0.01米。7份就是7厘米、7/100米、0.07米。

  注:一位小数的形式实际上是分数十分之几的另外一种表示形式,4/10写成小数就是0.4。

  3.小数的基本性质:在一个小数的末尾添上0,小数的大小不变。

  如:10.05,在它的末尾添上0,就变成了10.050,10.05=10.050=10.0500=10.05000……大小没有发生变化。

  4.比较小数的大小:先看最高位,再看次高位,以此类推。

  比较两个小数的大小,先看它们的整数部分,整数部分大的那个小数就大;整数部分相同的,十分位上的数大的那个数就大;十分位相同就比较百分位……

  5.小数的加减法:列竖式相加减的时候,要把小数点对齐,然后再进行加减。

  计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后记住在得数中点上小数点。

  6.小数不一定比整数小

  八、解决问题

  在解答应用题时,首先要读准题目,分析题意,找出题目中的数量关系,在选择合适的方法来进行解答。

  九、数学广角

  在进行等量交换时,首先要正确理解已知条件,掌握已知条件中的数量关系,在进行交换。