高中数学知识点总结

时间:2025-10-16 16:52:34 热门总结 我要投稿

高中数学知识点总结合集(15篇)

  总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它在我们的学习、工作中起到呈上启下的作用,不妨坐下来好好写写总结吧。但是总结有什么要求呢?以下是小编整理的高中数学知识点总结,仅供参考,大家一起来看看吧。

高中数学知识点总结合集(15篇)

高中数学知识点总结1

  一、集合、简易逻辑

  1、集合;

  2、子集;

  3、补集;

  4、交集;

  5、并集;

  6、逻辑连结词;

  7、四种命题;

  8、充要条件。

  二、函数

  1、映射;

  2、函数;

  3、函数的单调性;

  4、反函数;

  5、互为反函数的函数图象间的关系;

  6、指数概念的扩充;

  7、有理指数幂的运算;

  8、指数函数;

  9、对数;

  10、对数的运算性质;

  11、对数函数。

  12、函数的应用举例。

  三、数列(12课时,5个)

  1、数列;

  2、等差数列及其通项公式;

  3、等差数列前n项和公式;

  4、等比数列及其通顶公式;

  5、等比数列前n项和公式。

  四、三角函数

  1、角的概念的推广;

  2、弧度制;

  3、任意角的三角函数;

  4、单位圆中的三角函数线;

  5、同角三角函数的基本关系式;

  6、正弦、余弦的诱导公式;

  7、两角和与差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函数、余弦函数的图象和性质;

  10、周期函数;

  11、函数的奇偶性;

  12、函数的图象;

  13、正切函数的图象和性质;

  14、已知三角函数值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法举例。

  五、平面向量

  1、向量;

  2、向量的加法与减法;

  3、实数与向量的积;

  4、平面向量的坐标表示;

  5、线段的定比分点;

  6、平面向量的数量积;

  7、平面两点间的距离;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的'基本性质;

  3、不等式的证明;

  4、不等式的解法;

  5、含绝对值的不等式。

  七、直线和圆的方程

  1、直线的倾斜角和斜率;

  2、直线方程的点斜式和两点式;

  3、直线方程的一般式;

  4、两条直线平行与垂直的条件;

  5、两条直线的交角;

  6、点到直线的距离;

  7、用二元一次不等式表示平面区域;

  8、简单线性规划问题;

  9、曲线与方程的概念;

  10、由已知条件列出曲线方程;

  11、圆的标准方程和一般方程;

  12、圆的参数方程。

  八、圆锥曲线

  1、椭圆及其标准方程;

  2、椭圆的简单几何性质;

  3、椭圆的参数方程;

  4、双曲线及其标准方程;

  5、双曲线的简单几何性质;

  6、抛物线及其标准方程;

  7、抛物线的简单几何性质。

  九、直线、平面、简单何体

  1、平面及基本性质;

  2、平面图形直观图的画法;

  3、平面直线;

  4、直线和平面平行的判定与性质;

  5、直线和平面垂直的判定与性质;

  6、三垂线定理及其逆定理;

  7、两个平面的位置关系;

  8、空间向量及其加法、减法与数乘;

  9、空间向量的坐标表示;

  10、空间向量的数量积;

  11、直线的方向向量;

  12、异面直线所成的角;

  13、异面直线的公垂线;

  14、异面直线的距离;

  15、直线和平面垂直的性质;

  16、平面的法向量;

  17、点到平面的距离;

  18、直线和平面所成的角;

  19、向量在平面内的射影;

  20、平面与平面平行的性质;

  21、平行平面间的距离;

  22、二面角及其平面角;

  23、两个平面垂直的判定和性质;

  24、多面体;

  25、棱柱;

  26、棱锥;

  27、正多面体;

  28、球。

  十、排列、组合、二项式定理

  1、分类计数原理与分步计数原理;

  2、排列;

  3、排列数公式;

  4、组合;

  5、组合数公式;

  6、组合数的两个性质;

  7、二项式定理;

  8、二项展开式的性质。

  十一、概率

  1、随机事件的概率;

  2、等可能事件的.概率;

  3、互斥事件有一个发生的概率;

  4、相互独立事件同时发生的概率;

  5、独立重复试验。

  必修一函数重点知识整理

  1、函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(—x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2、复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3、函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

  4、函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5、方程k=f(x)有解k∈D(D为f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

  (2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符号由口诀“同正异负”记忆;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10、对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13、恒成立问题的处理方法:

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解。

  拓展阅读:高中数学复习方法

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

高中数学知识点总结2

  4.1.1圆的标准方程

  1、圆的标准方程:(xa)2(yb)2r2

  圆心为A(a,b),半径为r的圆的方程

  2、点M(x0,y0)与圆(xa)(1)(x0(3)(x02(yb)2r2的关系的判断方法:

  a)2(y0b)2>r2,点在圆外(2)(x0a)2(y0b)2=r2,点在圆上a)2(y0b)2归海木心QQ:634102564

  (4)当l|r1r2|时,圆C1与圆C2内切;(5)当l|r1r2|时,圆C1与圆C2内含;

  4.2.3直线与圆的方程的应用

  1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法

  用坐标法解决几何问题的步骤:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的'几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.

  RM4.3.1空间直角坐标系

  1、点M对应着唯一确定的有序实数组(x,y,z),x、上的坐标

  2、有序实数组(x,y,z),对应着空间直角坐标系中的一点

  y、z分别是P、Q、R在x、y、z轴

  xOPQM"y3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,坐标。y叫做点M的纵坐标,z叫做点M的竖

  z4.3.2空间两点间的距离公式1、空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN

高中数学知识点总结3

  平均值等于每个小长方形面积(即概率)乘每组横坐标的中点,然后加和。

  平均数,首先得直方图应该归一化,也就是说所有矩形的面积之和为1,然后每个矩形的面积代表其底边中点横坐标的数的频率,那么面积乘以横坐标就相当于频率乘以横坐标,得到的当然是平均数。

  频率直方图中是没有样本数据的在某一个分组里,分布在这个分组的样本数据没法找得出来,然后也分布不均匀,所以就用这个组的中点的横坐标来表示这个分组的样本数据的平均值。

  而每一个小长方形的面积是表示相应的频率,(相当于相应数据的百分比)所以平均数等于每个小长方形的面积乘以相应的分组的底边中点横坐标的之和。

  频率分布直方图的运用

  频率分布直方图能清楚显示各组频数分布情况又易于显示各组之间频数的差别。它主要是为了将我们获取的.数据直观、形象地表示出来,让我们能够更好了解数据的分布情况,因此其中组距、组数起关键作用。

  分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征。当数据在100以内时,一般分5~12组为宜。

  从频率分布直方图可以估计出的几个数据:

  众数:频率分布直方图中最高矩形的底边中点的横坐标 。

  算术平均数:频率分布直方图每组数值的中间值乘以频率后相加。

  加权平均数:加权平均数就是所有的频率乘以数值后的和相加。

  中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标。

高中数学知识点总结4

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k0)

  二、一次函数的性质:

  1、y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数b取任何实数)

  2、当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1、作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

  3、k,b与函数图像所在象限:

  当k0时,直线必通过一、三象限,y随x的增大而增大;

  当k0时,直线必通过二、四象限,y随x的增大而减小。

  当b0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1、当时间t一定,距离s是速度v的一次函数。s=vt。

  2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人补充)

  1、求函数图像的k值:(y1—y2)/(x1—x2)

  2、求与x轴平行线段的中点:|x1—x2|/2

  3、求与y轴平行线段的中点:|y1—y2|/2

  4、求任意线段的长:(x1—x2)^2+(y1—y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)

  二次函数

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x—x)(x—x ) [仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线

  x= —b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P( —b/2a,(4ac—b^2)/4a )

  当—b/2a=0时,P在y轴上;当= b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  = b^2—4ac0时,抛物线与x轴有2个交点。

  = b^2—4ac=0时,抛物线与x轴有1个交点。

  = b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= —bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的'横坐标即为方程的根。

  1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  当h0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到、

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了、这给画图象提供了方便、

  2、抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)、

  3、抛物线y=ax^2+bx+c(a0),若a0,当x —b/2a时,y随x的增大而减小;当x —b/2a时,y随x的增大而增大、若a0,当x —b/2a时,y随x的增大而增大;当x —b/2a时,y随x的增大而减小、

  4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2—4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的两根、这两点间的距离AB=|x—x|

  当△=0、图象与x轴只有一个交点;

  当△0、图象与x轴没有交点、当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0、

  5、抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)/4a、

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值、

  6、用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a0)、

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a0)、

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x)(x—x)(a0)、

  7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现、

  反比例函数

  形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K0时,反比例函数图像经过一,三象限,是减函数

  当K0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

高中数学知识点总结5

  1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|k360,kZ

  ②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ

  ④终边在坐标轴上的角的集合:|k90,kZ

  ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

  ⑦若角与角的终边关于x轴对称,则角与角的关系:360k

  ⑧若角与角的终边关于y轴对称,则角与角的关系:360k180

  ⑨若角与角的终边在一条直线上,则角与角的关系:180k

  ⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧长公式:l||r.扇形面积公式:s12扇形2lr12||r

  2、三角函数在各象限的符号:(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函数的定义域:

  三角函数定义域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函数的基本关系式:

  sincostan

  cossincot

  tancot1sin2cos217、诱导公式:

  把k2“奇变偶不变,符号看象限”的三角函数化为的三角函数,概括为:三角函数的公式:

  (一)基本关系

  公式组一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式组二公式组三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式组四公式组五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角与角之间的互换

  cos()coscossinsincos()coscossinsin

  公式组六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函数的图象的性质:

  ysinxycosxytanxycotxyAsinx(A、>0)定义域RR值域周期性奇偶性单调性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函数A,A22奇函数2当当0,非奇非偶奇函数偶函数奇函数0,上为上为上为增函上为增函数;上为增增函数;增函数;数;上为减函数函数;上为减函数上为减上为减上为减函数函数函数注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).②ysinx与的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期为2(TT2,如图,翻折无效).

  ④ysin(x)的对称轴方程是xk2(

  kZ),对称中心(

  12k,0);

  ycos(x)的对称轴方程是xk(

  kZ),对称中心(k,0);

  yatn(

  x)的对称中心(

  k2,0).

  三角函数图像

  数y=Asin(ωx+φ)的振幅|A|,周期T2||,频率f1T||2,相位x;初

  相(即当x=0时的.相位).(当A>0,ω>0时以上公式可去绝对值符号),

  由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

  由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用

  ωx替换x)

  由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

  由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

  由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

高中数学知识点总结6

  数学知识点1

  柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

  截面距离与高的比的平方。

  (3)棱台:

  几何特征:

  ①上下底面是相似的平行多边形

  ②侧面是梯形

  ③侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:

  ①底面是全等的圆;

  ②母线与轴平行;

  ③轴与底面圆的半径垂直;

  ④侧面展开图

  是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:

  ①底面是一个圆;

  ②母线交于圆锥的顶点;

  ③侧面展开图是一个扇形。

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:

  ①上下底面是两个圆;

  ②侧面母线交于原圆锥的顶点;

  ③侧面展开图是一个弓形。

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:

  ①球的截面是圆;

  ②球面上任意一点到球心的距离等于半径。

  数学知识点2

  空间几何体的.三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

  数学知识点3

  空间几何体的直观图——斜二测画法

  斜二测画法特点:

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

高中数学知识点总结7

  1、你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

  2、线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

  3、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

  3、线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。

  4、求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

  5、异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

  6、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

  7、两条异面直线所成的角的范围:0°《α≤90°

  直线与平面所成的角的.范围:0o≤α≤90°

  二面角的平面角的取值范围:0°≤α≤180°

  8、你知道异面直线上两点间的距离公式如何运用吗?

  9、平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

  10、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

  11、棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

  12、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。

高中数学知识点总结8

  1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等?4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补

  15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等

  28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°

  50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分

  56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形

  68菱形判定定理2对角线互相垂直的平行四边形是菱形

  69正方形性质定理1正方形的四个角都是直角,四条边都相等

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

  78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底平行的`直线,必平分另一腰

  80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97性质定理2相似三角形周长的比等于相似比

  98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  109定理不在同一直线上的三点确定一个圆。

  110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

  114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

  122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

  126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  127圆的外切四边形的两组对边的和相等

  128弦切角定理弦切角等于它所夹的弧对的圆周角

  129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)

  ④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公*弦137定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

  140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

  143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长扑愎剑=n兀R/180

  145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)(还有一些,大家帮补充吧)实用工具:常用数学公式公式分类公式表达式

  乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

  b^2-4ac=0注:方程有两个相等的实根b^2-4ac>0注:方程有两个不等的实根b^2-4ac抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h

  正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h

高中数学知识点总结9

  :平面

  1.经过不在同一条直线上的三点确定一个面.

  注:两两相交且不过同一点的四条直线必在同一平面内.

  2.两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)

  3.过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

  [注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.

  4.三个平面最多可把空间分成8部分.(X、Y、Z三个方向)

  :空间的直线与平面

  ⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.

  ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

  ⑴公理四(平行线的传递性).等角定理.

  ⑵异面直线的判定:判定定理、反证法.

  ⑶异面直线所成的角:定义(求法)、范围.

  ⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.

  ⒋直线和平面垂直

  ⑴直线和平面垂直:定义、判定定理.

  ⑵三垂线定理及逆定理.

  5.平面和平面平行

  两个平面的位置关系、两个平面平行的判定与性质.

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性质定理.

  (二)直线与平面的平行和垂直的证明思路(见附图)

  (三)夹角与距离

  7.直线和平面所成的角与二面角

  ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

  面所成的角、直线和平面所成的角.

  ⑵二面角:①定义、范围、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性质定理.

  8.距离

  ⑴点到平面的距离.

  ⑵直线到与它平行平面的距离.

  ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

  ⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

  (四)简单多面体与球

  9.棱柱与棱锥

  ⑴多面体.

  ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

  ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

  正方体;平行六面体的性质、长方体的性质.

  ⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

  ⑸直棱柱和正棱锥的直观图的画法.

  10.多面体欧拉定理的发现

  ⑴简单多面体的欧拉公式.

  ⑵正多面体.

  11.球

  ⑴球和它的性质:球体、球面、球的.大圆、小圆、球面距离.

  ⑵球的体积公式和表面积公式.

  :常用结论、方法和公式

  1.异面直线所成角的求法:

  (1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

  (2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

  2.直线与平面所成的角

  斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;

  3.二面角的求法

  (1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

  (2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

  (4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此法不必在图形中画出平面角;

  特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

  4.空间距离的求法

  (1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

  (2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

  (3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;

高中数学知识点总结10

  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a—边长,S=6a2,V=a3

  4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱锥S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

  11、r—底半径h—高V=πr^2h/3

  12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

  13、球r—半径d—直径V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

  16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

  二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的.二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高中数学知识点总结11

  一、平面的基本性质与推论

  1、平面的基本性质:

  公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

  公理2过不在一条直线上的三点,有且只有一个平面;

  公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  2、空间点、直线、平面之间的位置关系:

  直线与直线—平行、相交、异面;

  直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

  平面与平面—平行、相交。

  3、异面直线:

  平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

  所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

  两条直线不是异面直线,则两条直线平行或相交(反证);

  异面直线不同在任何一个平面内。

  求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

  二、空间中的平行关系

  1、直线与平面平行(核心)

  定义:直线和平面没有公共点

  判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

  性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

  2、平面与平面平行

  定义:两个平面没有公共点

  判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

  性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

  3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

  三、空间中的垂直关系

  1、直线与平面垂直

  定义:直线与平面内任意一条直线都垂直

  判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

  性质:垂直于同一直线的两平面平行

  推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

  直线和平面所成的角:【0,90】度,平面内的`一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

  2、平面与平面垂直

  定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

  判定:一个平面过另一个平面的垂线,则这两个平面垂直

  性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

高中数学知识点总结12

  (一)导数第一定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

  (二)导数第二定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义

  (三)导函数与导数

  如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1.利用导数研究多项式函数单调性的一般步骤

  (1)求f(x)

  (2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2.用导数求多项式函数单调区间的一般步骤

  (1)求f(x)

  (2)f(x)>0的解集与定义域的交集的`对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

  学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

高中数学知识点总结13

  数学选修2-2导数及其应用知识点必记

  1.函数的平均变化率是什么?答:平均变化率为

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自变量的改变量,可正,可负,可零。

  注2:函数的平均变化率可以看作是物体运动的平均速度。

  2、导函数的概念是什么?

  答:函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)y,则称limx0xx0x函数yf(x)在点x0处可导,并把这个极限叫做yf(x)在x0处的导数,记作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均变化率和导数的几何意义是什么?

  答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

  4导数的背景是什么?

  答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

  5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常见的导数和定积分运算公式有哪些?答:若fx,gx均可导(可积),则有:和差的导数运算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)积的导数运算特别地:Cfx"Cf"x商的导数运算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特别地:"2gxgx复合函数的导数yxyuux微积分基本定理fxdxab(其中F"xfx)和差的积分运算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特别地:积分的区间可加性bakf(x)dxkf(x)dx(k为常数)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数f"(x)

  ②令f"(x)>0,解不等式,得x的范围就是递增区间.③令f"(x)

  8.利用导数求函数的最值的步骤是什么?

  答:求f(x)在a,b上的最大值与最小值的步骤如下:⑴求f(x)在a,b上的极值;

  ⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

  注:实际问题的开区间唯一极值点就是所求的最值点;

  9.求曲边梯形的思想和步骤是什么?

  答:分割近似代替求和取极限(“以直代曲”的思想)

  10.定积分的性质有哪些?

  根据定积分的定义,不难得出定积分的如下性质:

  11.

  ababbbbb性质5若f(x)0,xa,b,则f(x)dx0

  ①推广:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推广:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定积分的取值情况有哪几种?

  答:定积分的值可能取正值,也可能取负值,还可能是0.

  (l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;

  (2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;

  (3)当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.

  12.物理中常用的微积分知识有哪些?答:(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。

  数学选修2-2推理与证明知识点必记

  13.归纳推理的定义是什么?答:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。

  14.归纳推理的思维过程是什么?答:大致如图:

  实验、观察概括、推广猜测一般性结论

  15.归纳推理的特点有哪些?

  答:①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。

  ②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

  16.类比推理的定义是什么?

  答:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。

  17.类比推理的思维过程是什么?答:

  观察、比较联想、类推推测新的结论

  18.演绎推理的定义是什么?

  答:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。

  19.演绎推理的主要形式是什么?答:三段论

  20.“三段论”可以表示为什么?

  答:①大前题:M是P②小前提:S是M③结论:S是P。

  其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

  21.什么是直接证明?它包括哪几种证明方法?

  答:直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

  22.什么是综合法?

  答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的'结论。

  23.什么是分析法?答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

  要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件.分析法和综合法常结合使用,不要将它们割裂开。

  24什么是间接证明?

  答:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

  25.反证法的一般步骤是什么?

  答:(1)假设命题结论不成立,即假设结论的反面成立;

  (2)从假设出发,经过推理论证,得出矛盾;

  (3)从矛盾判定假设不正确,即所求证命题正确。

  26常见的“结论词”与“反义词”有哪些?原结论词反义词原结论词至少有一个至多有一个至少有n个至多有n个一个也没有至少有两个至多有n-1个至少有n+1个对任意x不成立p或qp且q反义词存在x使成立p且qp或q对所有的x都成立存在x使不成立

  27.反证法的思维方法是什么?答:正难则反....

  28.如何归缪矛盾?

  答:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;

  (3)自相矛盾.

  29.数学归纳法(只能证明与正整数有关的数学命题)的步骤是什么?nnN答:(1)证明:当n取第一个值时命题成立;00

  (2)假设当n=k(k∈N*,且k≥n0)时命题成立,证明当n=k+1时命题也成立由(1),(2)可知,命题对于从n0开始的所有正整数n都正确注:常用于证明不完全归纳法推测所得命题的正确性的证明。

  数学选修2-2数系的扩充和复数的概念知识点必记

  30.复数的概念是什么?答:形如a+bi的数叫做复数,其中i叫虚数单位,a叫实部,b叫虚部,数集

  Cabi|a,bR叫做复数集。

  规定:abicdia=c且,强调:两复数不能比较大小,只有相等或不相b=d等。实数(b0)

  31.数集的关系有哪些?答:复数Z一般虚数(a0)

  虚数(b0)纯虚数(a0)

  32.复数的几何意义是什么?答:复数与平面内的点或有序实数对一一对应。

  33.什么是复平面?

  答:根据复数相等的定义,任何一个复数zabi,都可以由一个有序实数对

  (a,b)唯一确定。由于有序实数对(a,b)与平面直角坐标系中的点一一对应,因此

  复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

  34.如何求复数的模(绝对值)?答:与复数z对应的向量OZ的模r叫做复数zabi的模(也叫绝对值)记作z或abi。由模的定义可知:zabia2b2

  35.复数的加、减法运算及几何意义是什么?

  答:①复数的加、减法法则:z1abi与z2cdi,则z1z2ac(bd)i。

  注:复数的加、减法运算也可以按向量的加、减法来进行。

  ②复数的乘法法则:(abi)(cdi)acbdadbci。

  ③复数的除法法则:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做实数化因子

  36.什么是共轭复数?

  答:两复数abi与abi互为共轭复数,当b0时,它们叫做共轭虚数。

高中数学知识点总结14

  1、集合的含义与表示

  集合的三大特性:确定性、互异性、无序性。集合的表示有列举法、描述法。

  描述法格式为:{元素|元素的特征},例如{x|x5,且xN}2、常用数集及其表示方法

  (1)自然数集N(又称非负整数集):0、1、2、3、

  (2)正整数集N

  或N+:1、2、3、

  (3)整数集Z:

  (4)有理数集Q:包含分数、整数、有限小数等

  (5)实数集R:全体实数的集合

  (6)空集Ф:不含任何元素的集合

  3、元素与集合的关系:属于∈,不属于

  4、集合与集合的关系:子集、真子集、相等

  5、重要结论

  (1)传递性:若AB,BC,则AC

  (2)Ф是任何集合的子集,是任意非空集合的真子集。

  6、含有n个元素的集合,它的子集个数共有2n个;真子集有2n1个;非空子集有2n1个(即不计空集);非空的真子集有2n2个。

  7、集合的运算:交集、并集、补集.

  (1)A∩B={x|x∈A,且x∈B}.

  (2)A∪B={x|x∈A,或x∈B}.

  (3)CUAx|xU,且xA注:讨论集合的情况时,不要发遗忘了A的情况。

  8、函数概念

  9、分段函数:在定义域的不同部分,有不同的对应法则的函数。如y2x1x0x23x010、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)

  ①分式的分母不为零;如:y1x1,则x10

  ②偶次方根的被开方数大于或等于零;如:y5x,则5x0

  ③对数的底数大于0且不等于1;如:yloga(x2),则a0且a1

  ④对数的真数大于0;如:yloga(x2),则x20

  ⑤指数为0的底不能为零;如:y(m1)x,则m1011、函数的奇偶性(在整个定义域内考虑)

  (1)奇函数满足f(x)f(x),奇函数的图象关于原点对称;

  (2)偶函数满足f(x)f(x),偶函数的图象关于y轴对称;

  注:

  ①具有奇偶性的函数,其定义域关于原点对称;

  ②若奇函数在原点有定义,则f(0)0

  ③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

  12、函数的单调性(在定义域的某个区间内考虑)

  当x1x2时,都有f(x1)f(x2),则f(x)在该区间上是增函数,图象从左到右上升;当x1x2时,都有f(x1)f(x2),则f(x)在该区间上是减函数,图象从左到右下降。

  函数f(x)在某区间上是增函数或减函数,那么说f(x)在该区间具有单调性,该区间叫做单调(增/减)区间

  13、一元二次方程ax2bxc0(a0)

  (1)求根公式:xbb24ac21,22a

  (2)判别式:b4ac

  (3)0时方程有两个不等实根;0时方程有一个实根;0时方程无实根。

  (4)根与系数的关系韦达定理:xxbc12a,x1x2a

  14、二次函数:一般式yax2bxc(a0);两根式ya(xx1)(xx2)(a0)

  (1)顶点坐标为(b4acb2by2a,4a);

  (2)对称轴方程为:x=2a;x0

  (3)当a0时,图象是开口向上的抛物线,在x=b4acb22a处取得最小值4a

  当a0时,图象是开口向下的抛物线,在x=b4acb22a处取得最大值4a

  (4)二次函数图象与x轴的交点个数和判别式的关系:

  0时,有两个交点;0时,有一个交点(即顶点);0时,无交点。

  15、函数的零点

  使f(x)0的实数x20叫做函数的零点。例如x01是函数f(x)x1的一个零点。注:函数yfx有零点函数yfx的图象与x轴有交点方程fx0有实根

  16、函数零点的判定:

  如果函数yfx在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0。那么,函数yfx在区间a,b内有零点,即存在ca,b,使得fc0。

  17、分数指数幂(a0,m,nN,且n1)m3

  (1)annam。如x3x2;

  (2)amn1132mn。如1;

  (3)(na)na;anamx3x

  (4)当n为奇数时,nana;当n为偶数时,nan|a|a,a0a,a0.1

  18、有理指数幂的运算性质(a0,r,sQ)

  (1)arasars;

  (2)(ar)sars;

  (3)(ab)rarbr

  19、指数函数yax(a0且a1),其中x是自变量,a叫做底数,定义域是Ra10a1yy图象1x10x

  (1)定义域:R0性

  (2)值域:(0,+∞)质

  (3)过定点(0,1),即x=0时,y=1

  (4)在R上是增函数(4)在R上是减函数20、若abN,则叫做以为底N的对数。记作:logaNb(a0,a1,N0)其中,a叫做对数的底数,N叫做对数的真数。

  注:指数式与对数式的互化公式:logaNbabN(a0,a1,N0)

  21、对数的性质

  (1)零和负数没有对数,即logaN中N0;

  (2)1的对数等于0,即loga10;底数的对数等于1,即logaa122、常用对数lgN:以10为底的对数叫做常用对数,记为:log10NlgN

  自然对数lnN:以e(e=2。71828)为底的对数叫做自然对数,记为:logeNlnN23、对数恒等式:alogaNN

  24、对数的运算性质(a>0,a≠1,M>0,N>0)

  (1)loga(MN)logMaMlogaN;

  (2)logaNlogaMlogaN;

  (3)lognaMnlogaM(nR)(注意公式的逆用)

  25、对数的换底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。

  ma推论

  ①或log1nnablog;

  ②logamblogab。

  bam

  26、对数函数ylogax(a0,且a1):其中,x是自变量,a叫做底数,定义域是(0,)

  a10a1y图像x01x01定义域:(0,∞)性质值域:R过定点(1,0)增函数减函数取值范围0

  ③如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。

  ④平行于同一直线的两条直线平行(平行的传递性)。

  33、等角定理:

  空间中如果两个角的两边对应平行,那么这两个角相等或互补(如图)12334、两条直线的位置关系:平行:(在同一平面内,没有公共点)共面直线(在同一平面内,有一个公共点)异面直线

  相交:(不同在任何一个平面内的两条直线,没有公共点)直线与平面的位置关系:

  (1)直线在平面上;

  (2)直线在平面外(包括直线与平面平行,直线与平面相交)

  两个平面的位置关系:

  (1)两个平面平行;

  (2)两个平面相交35、直线与平面平行:

  定义一条直线与一个平面没有公共点,则这条直线与这个平面平行。判定平面外一条直线与此平面内的一直线平行,则该直线与此平面平行。

  性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

  36、平面与平面平行:

  定义两个平面没有公共点,则这两平面平行。

  判定若一个平面内有两条相交直线与另一个平面平行,则这两个平面平行。

  性质

  ①如果两个平面平行,则其中一个面内的任一直线与另一个平面平行。

  ②如果两个平行平面同时与第三个平面相交,那么它们交线平行。

  37、直线与平面垂直:

  定义如果一条直线与一个平面内的任一直线都垂直,则这条直线与这个平面垂直。

  判定一条直线与一个平面内的两相交直线垂直,则这条直线与这个平面垂直。

  性质

  ①垂直于同一平面的两条直线平行。

  ②两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直。

  38、平面与平面垂直:

  定义两个平行相交,如果它们所成的二面角是直二面角,则这两个平面垂直。判定一个平面过另一个平面的垂线,则这两个平面垂直。

  性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

  39、三角形的五“心”

  (1)O为ABC的外心(各边垂直平分线的交点)。外心到三个顶点的距离相等

  (2)O为ABC的重心(各边中线的交点)。重心将中线分成2:1的两段

  (3)O为ABC的垂心(各边高的交点)。

  (4)O为ABC的内心(各内角平分线的交点)。内心到三边的距离相等

  40、直线的斜率:

  (1)过Ax1,y1,Bx2,y2y12两点的直线,斜率kyx,(x1x2)2x1

  (2)已知倾斜角为的直线,斜率ktan(900)

  41、直线位置关系:已知两直线l1:yk1xb1,l2:yk2xb2,则l1//l2k1k2且b1b2 l1l2k1k21

  特殊情况:

  (1)当k1,k2都不存在时,l1//l2;

  (2)当k1不存在而k20时,l1l24

  2、直线的五种方程:

  ①点斜式yy1k(xx1)(直线l过点(x1,y1),斜率为k).

  ②斜截式ykxb(直线l在y轴上的截距为b,斜率为k)。

  ③两点式yy1xx1yx(直线过两点(x1,y1)与(x2,y2))。2y12x1

  ④截距式xayb1(a,b分别是直线在x轴和y轴上的截距,均不为0)

  ⑤一般式AxByC0(其中A、B不同时为0);可化为斜截式:yABxCB4

  3、(1)平面上两点A(x,y221,y1),B(x22)间的距离公式:|AB|=(x1x2)(y1y2)

  (2)空间两点A(x(x2221,y1,z1),B2,y2,z2)距离公式|AB|=(x1x2)(y1y2)(z1z2)

  (3)点到直线的距离d|Ax0By0C|A2B2(点P(x0,y0),直线l:AxByC0)。

  44、两条平行直线AxByC10与AxByC20间的距离公式:dC1C2A2B2

  注:求直线AxByC0的.平行线,可设平行线为AxBym0,求出m即得。

  45、求两相交直线A1xB1yC10与A2xB2yC20的交点:解方程组AxB1yC10A12xB2yC20

  46、圆的方程:

  ①圆的标准方程(xa)2(yb)2r2。其中圆心为(a,b),半径为r

  ②圆的一般方程x2y2DxEyF0。

  其中圆心为(D2,ED2E24F222),半径为r2,其中DE4F>0

  47、直线AxByC0与圆的(xa)2(yb)2r2位置关系

  (1)dr相离0;

  (2)dr相切0;其中d是圆心到直线的距离,且dAaBbC(3)dr相交0。

  A2B23

  48、直线与圆相交于A(x1,y1),B(x2,y2)两点,求弦AB长度的公式:

  (1)|AB|2r2d2

  (2)|AB|1k2(x21x2)4x1x2(结合韦达定理使用),其中k是直线的斜率

  49、两个圆的位置关系:设两圆的圆心分别为O1,O2,半径分别为r1,r2,O1O2d

  1)dr1r2外离4条公切线;

  2)dr1r2外切3条公切线;

  3)r1r2dr1r2相交2条公切线;

  4)dr1r2内切1条公切线;

  5)0dr1r2内含无公切线

  必修③公式表

  50、三种抽样方法的区别与联系类别共同点各自特点相互联系适用范围简单随机抽样从总体中逐个抽取总体中个体数较少分层抽取过程将总体分成几层各层抽样可采用总体有差异明显的几部抽样中每个个体进行抽取简单随机抽样或分组成被抽取的概系统抽样率相等将总体平均分成系统抽样几部分,按事先确在起始部分抽样定的规则分别在各时采用简单随机总体中的个体较多部分抽取抽样

  51、

  (1)频率分布直方图(注意其纵坐标是“频率/组距)

  组数极差,频率频数,小矩形面积组距频率频率。组距样本容量组距

  (2)数字特征

  众数:一组数据中,出现次数最多的数。

  中位数:一组数从小到大排列,最中间的那个数(若最中间有两个数,则取其平均数)。平均数:x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]

  标准差:s1nxx2x2212xxnx

  注:通过标准差或方差可以判断一组数据的分散程度;其值越小,数据越集中;其值越大,数据越分散。ninxyxiy回归直线方程:ybxa,其中bi1n,aybx,

  x2inx2i1

  注:回归直线一定过样本点中心(x,y)

  52、事件的分类:

  基本事件:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件。

  (1)必然事件:必然事件是每次试验都一定出现的事件。P(必然事件)=1

  (2)不可能事件:任何一次试验都不可能出现的事件称为不可能事件。P(不可能事件)=0

  (3)随机事件:随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件

  53、在n次重复实验中,事件A发生的次数为m,则事件A发生的频率为m/n,当n很大时,m总是在某个常数值附近摆动,就把这个常数叫做事件A的概率。(概率范围:0PA1)

  54、互斥事件概念:在一次随机事件中,不可能同时发生的两个事件,叫做互斥事件(如图1)。如果事件A、B是互斥事件,则P(A+B)=P(A)+P(B)

  55、对立事件(如图2):指两个事件不可能同时发生,但必有一个发生。AB图1对立事件性质:P(A)+P(A)=1,其中A表示事件A的对立事件。

  56、古典概型是最简单的随机试验模型,古典概型有两个特征:AB

  (1)基本事件个数是有限的;

  (2)各基本事件的出现是等可能的,即它们发生的概率相同.

  57、设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)公式为PAA包含的基本事件的个数基本事件的总数=mn

  运用互斥事件的概率加法公式时,首先要判断它们是否互斥,再由随机事件的概率公式分别求它们的概率,然后计算。在计算某些事件的概率较复杂时,可转而先示对立事件的概率。58、几何概型的概率公式:PA构成事件A的区域长度(面积或体积)试验的全部结果构成的区域长度(面积或体积)

  必修④公式表

  r59、终边相同角构成的集合:|2k,kZ

  l)l

  60、弧度计算公式:r

  61、扇形面积公式:S12lr12r2(为弧度)62、三角函数的定义:已知Px,y是的终边上除原点外的任一点P(x,y)r则siny,cosx,tany,其中r2x2)yrrxy2x63、三角函数值的符号++++

  ++sincostan

  4

  64、特殊角的三角函数值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函数的关系:sin2cos21,tansincos

  66、和角与差角公式:二倍角公式:

  sin()sincoscossin;sin22sincos

  cos()coscossinsin;cos2cos2sin212sin2

  tan()tantan2cos211tantan。tan22tan1tan267、诱导公式记忆口诀:奇变偶不变,符号看象限;其中,奇偶是指2的个数

  sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos

  tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin

  68、辅助角公式:asinbcos=a2b2sin()(辅助角所在象限与点(a,b)的象限相同,且

  tanba)。主要在求周期、单调性、最值时运用。如y3sinxcosx2sin(x6)

  69、半角公式(降幂公式):sin21cos1cos22,cos22270、三角函数yAsin(x)的性质(A0,0)

  (1)最小正周期T2;振幅为A;频率f1T;相位:x;初相:;值域:[A,A];

  对称轴:由x2k解得x;对称中心:由xk解得x组成的点(x,0)

  (2)图象平移:x左加右减、y上加下减。

  例如:向左平移1个单位,解析式变为yAsin[(x1)]向下平移3个单位,解析式变为yAsin(x)3

  (3)函数ytan(x)的最小正周期T。71、正弦定理:在一个三角形中,各边与对应角正弦的比相等。

  asinAbsinBcsinC2R(R是三角形外接圆半径)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推论cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面积公式:S11ABC2absinC2acsinB12bcsinA。74、三角函数的图象与性质和性质三角函数ysinxycosxytanxyyy11图象xx—0x3—122—20—122—0222定义域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函数偶函数奇函数在[22k,22k]在[2k,2k]在(2k,22k)单调性上是增函数上是增函数上都是增函数kZ在[22k,322k]在[2k,2k]上是减函数上是减函数76、向量的三角形法则:79、向量的平行平行四边形法则:

  a+bbabab—aba+ba—177、平面向量的坐标运算:设向量a=(x1,y1),向量b=(x2,y2)

  (1)加法a+b=(x1x2,y1y2)。(2)减法a—b=(x1x2,y1y2)。(3)数乘a=(x1,y1)(x1,y1)

  (4)数量积ab=|a||b|cosθ=x1x2y1y2,其中是这两个向量的夹角

  (5)已知两点A(x1,y1),B(x2,y2),则向量ABOBOA(x2x1,y2y1)。

  78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a

  79、两向量的夹角公式cosabx1x2y1y2abx2y22y2

  11x2280、向量的平行与垂直(b0)

  a||bb=λax1y2x2y10。记法:a=(x1,y1),b=(x2,y2)

  abab=0x1x2y1y20。记法:a=(x1,y1),b=(x2,y2)

  必修⑤公式表

  81、数列前n项和与通项公式的关系:

  aS1,n1;n(数列{an}的前n项的和为sna1a2aSn)。nSn1,n2。82、等差、等比数列公式对比nN等差数列等比数列定义式aanan1danq(q0)n1通项公式及a1推广公式anaa1n1mddana1qnnmnanamqnm中项公式若a,A,b成等差,则Aab若a,G,b成等比,则G22ab运算性质若mnpq2r,则若mnpq2r,则anamapaq2aranamapaqa2r前n项和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一个性质Sm,S2mSm,S3mS2m成等差数列Sm,S2mSm,S3mS2m成等比数列83、解不等式(1)、含有绝对值的不等式

  当a>0时,有xax2a2axa。[小于取中间]

  xax2a2xa或xa。[大于取两边]

  (2)、解一元二次不等式ax2bxc0,(a0)的步骤:

  ①求判别式b24ac000②求一元二次方程的解:两相异实根一个实根没有实根③画二次函数yax2bxc的图象

  ④结合图象写出解集

  ax2bxc0解集xxxb2或xx1xx2aR

  ax2bxc0解集xx1xx2

  注:ax2bxc0(a0)解集为Rax2bxc0对xR恒成立0(3)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。如解分式不等式

  x1x1:先移项x1x10;通分(x1)xx0;再除变乘(2x1)x0,解出。

  84、线性规划:

  直线AxByC0

  (1)一条直线将平面分为三部分(如图):

  AxByC0(2)不等式AxByC0表示直线AxByC0

  AxByC0

  某一侧的平面区域,验证方法:取原点(0,0)代入不

  等式,若不等式成立,则平面区域在原点所在的一侧。假如直线恰好经过原点,则取其它点来验证,例如取点(1,0)。

  (3)线性规划求最值问题:一般情况可以求出平面区域各个顶点的坐标,代入目标函数z,最大的为最大值。

高中数学知识点总结15

  数学知识点1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

  截面距离与高的比的平方。

  (3)棱台:

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

  是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  数学知识点2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

  数学知识点3、空间几何体的直观图——斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  平面

  通常用一个平行四边形来表示。

  平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。

  在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

  a) A∈l—点A在直线l上;Aα—点A不在平面α内;

  b) lα—直线l在平面α内;

  c) aα—直线a不在平面α内;

  d) l∩m=A—直线l与直线m相交于A点;

  e) α∩l=A—平面α与直线l交于A点;

  f) α∩β=l—平面α与平面β相交于直线l。

  二、平面的基本性质

  公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

  公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

  公理3经过不在同一直线上的三个点,有且只有一个平面。

  根据上面的公理,可得以下推论。

  推论1经过一条直线和这条直线外一点,有且只有一个平面。

  推论2经过两条相交直线,有且只有一个平面。

  推论3经过两条平行直线,有且只有一个平面。

  公理4平行于同一条直线的两条直线互相平行

  如何让数学学科预习变得更高效

  一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解。遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点。

  二、想一想。对预习中感到困难的问题要先思考。如果是基础问题,可以用以前的知识看看能不能弄通。如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决。这样有利于提高对知识的理解,养成学习数学的良好思维习惯。

  三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案。这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。

  四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。

  五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路。对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。

  六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。

  七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力。如果做题时出现错误,要想想错在哪,为什么错,怎么改错。如果仍是找不到错误的根源,可在听课时重点听,逐步领会。

  该怎么提高数学课堂学习效率

  课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;

  手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

  耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

  口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

  眼到:就是一看老师讲课的'表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

  心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。

  数学复习方法学霸分享

  1、重点练习几种类型的题目

  不要钻偏题、怪题、过难题的牛角尖,根据平时做套卷时的感受,多练习以下几个类型的题目。

  (1)初看没有思路,但分析后能顺利做出的。通过对这类问题的练习,能够使我们对题目的考点和重点更熟悉,提高建立思路的速度和切入点的准确度,让我们能在考试中留出更多时间来处理后面难度高、阅读量大的综合题。

  (2)自己经常出错的中档题。中档题在中考中每年的考查内容都差不多,题目位置也相对固定,属于解决了一个板块就能得到相应版块分数的类型。在中档题的某个题型经常出错说明对这部分内容的基本概念和常用方法理解不到位。通过练习,多总结这类题目的解题思路和技巧,把不稳定的得分变成到手的分数。中档题难度一般不会太高,所以对于自己薄弱的中档题进行突击练习一般都会有很好的效果。

  (3)基础相对薄弱的同学也应该做一些常考的题目类型。比如圆的切线的判定以及与圆相关的线段计算、一次函数和反比例函数的综合、二元一次方程整数根问题等,通过练习,进一步提高我们解决这些问题的熟练度

  2、学会看错题的正确方式

  大部分学生都有错题本,在复习时看错题本,巩固自己的错误是不错的复习方式,但在看错题时一定要杜绝连题目带答案一起顺着看下来的方式。尽量能够将答案挡住,自己再尝试做一遍,如果做的过程中遇到问题再去看答案,并做好标注,过两天再试做一遍,争取能在期末考试前将之前的错题整体过两到三遍、加深印象。

  3、认真研究每道题目的考点

  做题时,我们心中要对相应题目所对应的考点有所了解,比如填空题中如果出现几何问题,主要是对图形基本性质和面积的考察,而很少考到全等三角形的证明(尺规作图写依据除外),所以我们在填空题中看到几何问题,就不用从全等方面找突破口,而是更多地注重图形的基本性质。比如平行四边形对角线互相平分、等腰三角形三线合一等。

  4、尽量避免只看不算

  很多同学在复习时不喜欢动笔,觉得自己看明白了就行,但俗话说“眼过千遍不如手过一遍”,不去实际操作只是看一遍题目,对题目解法和思路的印象其实是很低的。而且在计算过程中还能锻炼我们的计算能力,提高解题速度和准确性。许多同学在写证明题时很不熟练,逻辑不顺畅,也是由于平时对书写的不重视,应该趁着期末考试前的时间,多练练书写。

  学好数学要重视“四个依据”是什么

  读好一本教科书——它是教学、考试的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好一本习题集——它是知识的拓宽;

  记好一本心得笔记——它是你自己的知识。

【高中数学知识点总结】相关文章:

高中数学知识点总结08-26

高中数学知识点总结08-01

高中数学必修三知识点总结05-17

高中数学知识点总结【优选】07-09

高中数学知识点总结及公式06-09

高中数学知识点总结15篇08-26

高中数学知识点总结15篇(优)05-15

高中数学知识点总结【合集15篇】05-15

【精品】高中数学知识点总结15篇07-26

高中数学学业水平考知识点总结09-29