线性代数知识点总结

时间:2024-09-19 14:31:35 热门总结 我要投稿
  • 相关推荐

线性代数知识点总结

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以提升我们发现问题的能力,不如立即行动起来写一份总结吧。那么总结有什么格式呢?以下是小编为大家整理的线性代数知识点总结,欢迎阅读,希望大家能够喜欢。

线性代数知识点总结

线性代数知识点总结1

  线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的20xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对20xx考研的同学们学习有帮助。

  行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20xx年全国硕士研究生入学统一考试数学120种常考题型精解》。

  矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

  向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

  往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

  特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。

  由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的`概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

  一、行列式与矩阵

  行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

  行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。

  矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。

  二、向量与线性方程组

  向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

  向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

  这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

  (1)齐次线性方程组与向量线性相关、无关的联系

  齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

  齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

  (2)齐次线性方程组的解与秩和极大无关组的联系

  同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

  (3)非齐次线性方程组与线性表出的联系

  非齐次线性方程组是否有解对应于向量是否可由列向量

  三、特征值与特征向量

  相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

  本章知识要点如下:

  1. 特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

  2. 相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

  3. 矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

  4. 实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

  四、二次型

  这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。

  本章核心要点如下:

  1. 用正交变换化二次型为标准型。

  2. 正定二次型的判断与证明。

线性代数知识点总结2

  1、矩阵乘法注意事项:

  (1)矩阵乘法要求前列后行一致;

  (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A,f(A)时,可以用交换律)

  (3)AB=O不能推出A=O或B=O。

  2、转置的性质(5条)

  (1)(A+B)T=AT+BT

  (2)(kA)T=kAT

  (3)(AB)T=BTAT

  (4)|A|T=|A|

  (5)(AT)T=A

线性代数知识点总结3

  第一章行列式

  知识点1:行列式、逆序数

  知识点2:余子式、代数余子式

  知识点3:行列式的性质

  知识点4:行列式按一行(列)展开公式

  知识点5:计算行列式的方法

  知识点6:克拉默法则

  第二章矩阵

  知识点7:矩阵的概念、线性运算及运算律

  知识点8:矩阵的乘法运算及运算律

  知识点9:计算方阵的幂

  知识点10:转置矩阵及运算律

  知识点11:伴随矩阵及其性质

  知识点12:逆矩阵及运算律

  知识点13:矩阵可逆的判断

  知识点14:方阵的行列式运算及特殊类型的矩阵的运算

  知识点15:矩阵方程的求解

  知识点16:初等变换的概念及其应用

  知识点17:初等方阵的概念

  知识点18:初等变换与初等方阵的关系

  知识点19:等价矩阵的概念与判断

  知识点20:矩阵的子式与最高阶非零子式

  知识点21:矩阵的秩的概念与判断

  知识点22:矩阵的秩的性质与定理

  知识点23:分块矩阵的概念与运算、特殊分块阵的运算

  知识点24:矩阵分块在解题中的技巧举例

  第三章向量

  知识点25:向量的概念及运算

  知识点26:向量的线性组合与线性表示

  知识点27:向量组之间的`线性表示及等价

  知识点28:向量组线性相关与线性无关的概念

  知识点29:线性表示与线性相关性的关系

  知识点30:线性相关性的判别法

  知识点31:向量组的最大线性无关组和向量组的秩的概念

  知识点32:矩阵的秩与向量组的秩的关系

  知识点33:求向量组的最大无关组

  知识点34:有关向量组的定理的综合运用

  知识点35:内积的概念及性质

  知识点36:正交向量组正交阵及其性质

  知识点37:向量组的正交规范化、施密特正交化方法

  知识点38:向量空间(数一)

  知识点39:基变换与过渡矩阵(数一)

  知识点40:基变换下的坐标变换(数一)

  第四章 线性方程组

  知识点41:齐次线性方程组解的性质与结构

  知识点42:非齐次方程组解的性质及结构

  知识点43:非齐次线性线性方程组解的各种情形

  知识点44:用初等行变换求解线性方程组

  知识点45:线性方程组的公共解、同解

  知识点46:方程组、矩阵方程与矩阵的乘法运算的关系

  知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例

  第五章矩阵的特征值与特征向量

  知识点48:特征值与特征向量的概念与性质

  知识点49:特征值和特征向量的求解

  知识点50:相似矩阵的概念及性质

  知识点51:矩阵的相似对角化

  知识点52:实对称矩阵的相似对角化.

  知识点53:利用相似对角化求矩阵和矩阵的幂

  第六章二次型

  知识点54:二次型及其矩阵表示

  知识点55:矩阵的合同

  知识点56 : 矩阵的等价、相似与合同的关系

  知识点57:二次型的标准形

  知识点58:用正交变换化二次型为标准形

  知识点59:用配方法化二次型为标准形

  知识点60:正定二次型的概念及判断

线性代数知识点总结4

  (1)AA=AA=|A|E ★A=|A|A-1

  (2)(kA)=kn-1A

  (3)(AB)=BA

  (4)|A|=|A|n-1

  (5)(AT)=(A)T

  (6)(A-1)=(A)-1=A|A|-1

  (7)(A)=|A| n-2·A

  ★(8)r(A)=n(r(A)=n);

  r(A)=1(r(A)=n-1);

  r(A)=0(r(A)<n-1)

线性代数知识点总结5

  1、特征值、特征向量的定义:

  设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

  2、特征多项式、特征方程的定义:

  |λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

  |λE-A |=0称为矩阵A的特征方程(λ的n次方程)。

  注:特征方程可以写为|A-λE|=0

  3、重要结论:

  (1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量

  (2)A的`各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

  (3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

  4、总结:特征值与特征向量的求法

  (1)A为抽象的:由定义或性质凑

  (2)A为数字的:由特征方程法求解

  5、特征方程法:

  (1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn

  注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)

  (2)解齐次方程(λiE-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λiE-A)个解)

  6、性质:

  (1)不同特征值的特征向量线性无关

  (2)k重特征值最多k个线性无关的特征向量

  1≤n-r(λiE-A)≤ki

  (3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σaii

  (4)当r(A)=1,即A=αβT,其中α,β均为xxx零列向量,则A的特征值为λ1=Σaii=αTβ=βTα,λ2=…=λn=0

【线性代数知识点总结】相关文章:

函数知识点总结06-09

消防知识点总结09-11

数的知识点总结04-23

化学知识点总结04-24

复数知识点总结03-29

物理知识点总结06-01

风带知识点总结07-22

英语知识点总结07-26

椭圆知识点总结01-13

导游知识点总结01-20