初中数学归纳总结
总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以有效锻炼我们的语言组织能力,不如我们来制定一份总结吧。但是却发现不知道该写些什么,以下是小编为大家整理的初中数学归纳总结,希望对大家有所帮助。

初中数学归纳总结1
1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:
⑴矩形具有平行四边形的一切性质;
⑵菱形的四条边都相等;
⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
4、因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
6、公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
9、中被开方数的取值范围:被开方数a≥0
10、平方根性质:
①一个正数的'平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0
13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;
完全平方数类型:
①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学归纳总结2
一、课堂上坚持忆、清、练相结合
1.忆。回忆是复习课不可缺少的环节,教师要引导学生有意识地看课题回忆所学知识,看课本目录回忆单元知识。回忆时,可先粗后细,并进行讨论,在此基础上再进行复述,以系统地回忆已学知识。
2.清。就是梳理、总结、归纳,理清知识线索、解题思路,弄清各种题型的解题方法、技巧的过程。教师要引导学生根据回忆,进行点——线——面的总结,做到从一点或一题串一线、连一面,特别要注意知识间纵向、横向的联系和比较,构建知识脉络。要引导学生学会归纳、总结,在理清知识脉络时,可以根据复习内容的多少,分项、分步进行整理,将所学知识前后贯通,并进行拓展。
3.练。对以前的学习内容在进行回忆、整理、分析的基础上,选取典型题型和适量的题目进行当堂训练和检测,以熟悉和巩固解题的方法和技巧。
二、归纳强化,提高正确率
1.常见题型,要熟能生巧。要引导学生经过适量、适当的强化训练以达到熟能生巧、触类旁通的程度。每练习一题就应是一次学习和巩固这类题型的'解题方法、技巧的机会和过程,以达到一看到这类题型,马上就能联想到与这类题型相关的知识及解题的常用方法、技巧。
2.注重归纳、总结知识体系。归纳和总结知识体系不只是简单的机械重复、死记硬背,而是要深化认识、拓展知识,从本质上发现数学知识之间的联系,从而加以分类、整理,逐渐形成一个条理化、网络化的有机知识体系,真正实现由厚到薄、由少到多的过程。
3.掌握数学思想方法。如,函数与方程、数形结合、分类、归纳等数学思想方法在复习时,教师要引导学生加以归纳,强化训练。强化规律、纠正解题中的不良习惯,掌握正确的答题程序、方法和技巧等,只有反复练习才能强化记忆,从而提高准确率。要引导学生认真总结过去做题时失误的地方,解答常见题型时,要严谨细致;解答中档题时,要联系已做过的题型,坚持不懈;解答较难题时,要理论联系实际,考虑拓展的数学知识,调整心态,不要轻易放弃。解题之前的分析很重要,学习数学不仅要学会怎么做,更要掌握数学思想,教师要引导学生把解题之前的思路分析作为重点,引导学生逐渐学会分析、判断和决策,以提高解题能力。
三、坚持做到“四化”
1.使概念习题化。数学概念的复习不是简单的重复,而是要建立概念之间的有机联系,不能死记硬背,要会解决实际问题。例如,初中数学中涉及到“代数式”、“整式”、“单项式”、“多项式”、 “二次根式”、“最简二次根式”等概念,教师要针对这些概念,要求学生记忆一些题型,以引导学生弄清这些概念及区别。
2.使知识系统化。复习的目的在于巩固知识,使其系统化,以减轻学习压力,同时零散的知识又不会被遗忘。教师可引导学生通过列表或画结构图来理清知识。例如,初中所学方程的知识庞杂,分布零散,可把所学主要知识进行归纳,形成“方程知识结构图”。
初中数学归纳总结3
波利亚强调:“数学科学具有两个侧面,已经形成的数学是一门系统的演绎科学;而正在形成中的数学则是一门实验性的归纳科学”。对于数学科学具有两个侧面的含义的理解,是我们正确把握数学教材的编写意图和课程理念关键。一本数学教材对教师而言则是一门系统的演绎科学,对正在学习过程中的学生而言则是一门实验性的归纳科学。结合初中数学教材的具体内容,对教材编写的演绎归纳二重性进行分析,以利于教师在数学教学中更好的利用教材设计的归纳演绎空间,培养学生的归纳演绎能力,从而培养学生的数学意识和数学创造能力。
一、利用教材的实验归纳空间培养学生的数学创新意识
新课程为了实现在教学中培养学生的数学意识的教学目标,为学生实验归纳留下了空间和机会,教师要充分利用好这些空间和机会让学生发挥主观能动性,在数学化的过程中培养学生的数学意识和创新意识。例如在有理数部分,教材给出一个思考题:“我们以前学过加法的交换律、结合律,在有理数的加法中它们还适用吗?计算30+(-20),(-20)+30。两次所得的和相同吗?换几个加数再试一试。你发现有什么规律吗?让学生总结:有理数的加法中,两个数相加,交换加数的位置,和不变。然后让学生看书上的结论发现与自己总结的相一致,于是学生就得到了成功的体验,从而增强了学生学好数学的信心,激发了学生学习数学的兴趣,这位学生的后续学习奠定了坚实的基础,因为信心是成功的一半,兴趣是最好的老师!
教材的编写意图就是为学生得到这一结论而设置的实验归纳空间。弗赖登塔尔也强调:“学生通过自己的努力得到的结论和创造是教育内容的一部分”。为了培养学生的数学意识和创新意识,必须充分利用好教材的实验归纳空间。书中这样的归纳空间很多,有理数乘法的交换律、结合律等都是这样处理的。为了有利于学生理解教材中的一些数学结论,教材从具体到抽象的编排体系,为学生的实验归纳创造了机会。例如在等式性质部分,书中让学生观察天平的的两边都加(或减)同样的量,天平还保持平衡。让学生通过天平平衡事实来理解等式的性质。这样的编排体系为学生掌握和理解等式的性质提供了归纳实验机会。数学上的实验往往是思想中的实验。教材在一元一次方程部分,在通过布列方程解决实际问题的'最后部分,书中归纳出用一元一次方程分析和解决实际问题的基本过程框图,这样做是为了让学生掌握数学思想方法。关于解一元一次方程的步骤,书中也是让学生通过具体的解方程的操作过程中归纳出来的。
二、用新课程标准的理念处理初中数学教材内容
在数学新课程理念中,要求学生能够用数学的眼光和角度观察、提出和解决问题,即培养学生的数学意识和数学创新意识。培养学生的合情推理能力和论证推理能力。这些教学理念和目标,要结合教材的归纳演绎二重性来实现。对于传统教材中有些内容进行了删减,例如一元二次方程与根的系数关系、直角三角形的射影定理等内容在新教材中不再以教材正文内容的形式出现,但是在习题中却涉及到了这些内容。这样的编排意图同样是为学生留下的归纳演绎空间。
在教学中对这部分内容的处理应该以研究性学习的形式布置学生认真完成,再归纳到知识系统之中,从而使学生学习的知识结构不断完善,更加演绎系统,让学生经历创新和发现,从而体验数学创新的快乐和成功,更重要的是增强学生的自信心并形成数学创新意识。这就是教材编排时在为培养学生的数学创新意识而创设的归纳演绎空间。学生在对某一本书的数学内容学习的过程中,学生的经历是不断试验、不断归纳的过程,但是,在学生对于某一本书的数学内容学习结束时,在学生的脑海中应该是系统的演绎的知识结构,结构上应该是与传统教材的演绎性相一致的数学。
初中数学归纳总结4
1有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
3、一个数与0相加,仍得这个数。
2有理数加法的运算律
1、加法的交换律:a+b=b+a;
2、加法的结合律:(a+b)+c=a+(b+c)
3有理数减法法则
减去一个数,等于加上这个数的相反数;即a—b=a+(—b)
4有理数乘法法则
1、两数相乘,同号为正,异号为负,并把绝对值相乘;
2、任何数同零相乘都得零;
3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5有理数乘法的运算律
1、乘法的交换律:ab=ba;
2、乘法的结合律:(ab)c=a(bc);
3、乘法的`分配律:a(b+c)=ab+ac
6单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的。
7多项式
1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
8中心对称
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
3、中心对称图形
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
初中数学归纳总结5
列出方程(组)解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;
2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程
追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2
二、利润问题
现价=原价*折扣率
折扣价=现价/原价*100%
每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用
利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率
税率=应纳数额/总收入*100%
本息和=本金+利息
税后利息=本金*存期*利率*(1-税率)税后利息=利息*税率
利率-利息/存期/本金/*100%利率的换算:
年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的.重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n=b或a(1-x)=bn
六、工程问题
工作效率=总工作量/工作时间工作时间=总工作量/工作效率
七、赛事,票价问题
赛事
单循环赛:n(n-1)/2
淘汰赛:n个球队,比赛场数为n-1场次票价则对应的不一样的赛制乘以对应的单价。
初中数学归纳总结6
初中数学总复习是初中数学教学的一个至关重要的环节。重视并认真完成这个阶段的教学任务,一是有利于初三学生巩固、消化、归纳数学基础知识;二是对基础较差的学生做到了查缺补漏,中等生有所提高,优等生再上一步,达到培优补差的目的;三是提高学生分析、解决问题的能力,以便应对中考,同时也能够使学生将所学的知识运用到现实生活中,达到学以致用。下面我结合多年来的教学实践与经验谈谈看法。
一、根据大纲和考纲,制订复习计划
初中数学内容多而杂,其基础知识和基本技能又比较分散,学生掌握起来很困难。因此,教师必须依据大纲规定的内容和知识要点,近几年的中考精神及试题的考点,精心拟订复习计划。计划的拟订要结合学生的实际情况。可采用基础知识习题化的方法,根据在平时教学中掌握的学生应用知识的情况,编制渗透主要知识点的测试题,让学生在规定时间内独立完成。然后根据测试中学生出现的问题确定复习的重点、难点及关键处。制订复习计划后,要做好复习课例题的选择、练习题的筛选。教师制订的复习计划要明确告之学生,让其制订个人具体复习规划。这样使每位学生都能在双重计划的督促下去学习、去努力。
二、理解、掌握、夯实基础知识
总复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,吃透课本。对学生提出明确的要求:
①对概念性的知识(法则、公式、定理等),不但要准确叙述,而且要灵活应用。例如,圆周角定理的推论:在同圆或等圆中,相等的圆周角所对的弧相等。如果把“同圆或等圆”这一条件忽略,后一部分即是一假命题,那么利用其作为依据就会得出错误的结果。因此一定要准确理解掌握概念性知识。
②对课本上的练习题必须逐题过关。因为每章后的复习题具有代表性、典型性、综合性,要求学生必须独立完成或小组讨论完成。尤其是近些年来的一些中考试题,是按课本上题的题型或是原题拓展延伸进行变形而命题的。所以在总复习时教师和学生都应注重课本知识。
三、整理、归纳、分类,培养学生能力
在总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理、归纳、分类,弄清数学知识间的内在联系及相互转化,从而形成知识网络。这样便于学生理解和掌握所学的知识。例如,初中函数部分主要分为一次函数、反比例函数、二次函数。四边形主要分为平行四边形、矩形、菱形、正方形。方程有一元一次方程、一元二次方程、分式方程。这种归纳总结在程度高的班级可由学生自行完成,在程度低的班级师生共同完成,其主要目的`是锻炼学生的归纳概括总结能力。通过对特殊四边形的性质、几种方程的解法的复习,学生能更进一步地了解数学知识间内在联系及相互转化关系,同时掌握转化思想。如解分式方程应转化成整式方程,一元二次方程应转化成一元一次方程。又如,利用图示表示几种四边形的关系,从而激发学生学习数学的兴趣。这样的知识归纳、整理便于学生理解和掌握。
四、精选练习题,提高复习成效
除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。以综合练习题为主,适当加大模拟题的分量。对教师来说,这时的主要任务是根据近几年的中考试题精选习题,删减复习资料中没有价值的题目,免得浪费学生过多的时间。精选综合练习题要注意两个方面:
第一,选择的习题要有目的性、典型性和规律性。近些年的中考都涉及较多基础性的题目。另外,选些联系生活实际,比较热点的开放性问题。在试卷讲评中充分发挥学生的主体作用,让学生自己评析,这样能大幅度提高学生学习积极性,从而培养学生的实践能力。
第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用;圆中圆周角、圆心角的关系推导及应用、垂径定理的证明及应用都是综合性强且是应重点掌握的内容,要抓住不放,抓出成效,收到举一反三,触类旁通的效果。练习题的精选是很重要的,不可忽视。教师出题测试时,低、中、高档题的比例要恰当,同时也要结合学生实际。讲评时要有针对性,不面面俱到。
总之,搞好初中数学总复习不是一件容易的事,是一项重大的工程。教师要不断刻苦钻研,严格要求自己,上好每一节复习课。
初中数学归纳总结7
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 :圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合。
6.圆的外部可以看作是圆心的距离大于半径的点的集合。
7.同圆或等圆的半径相等。
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的'弦心距相等。
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角。
12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。
14.切线的性质定理 圆的切线垂直于经过切点的半径。
15.推论1 经过圆心且垂直于切线的直线必经过切点。
16.推论2 经过切点且垂直于切线的直线必经过圆心。
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角。
18.圆的外切四边形的两组对边的和相等 外角等于内对角。
19.如果两个圆相切,那么切点一定在连心线上。
20.①两圆外离 d>R+r ②两圆外切 d=R+r ③.两圆相交 R-rr) ④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21.定理 相交两圆的连心线垂直平分两圆的公共弦。
22.定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
24.正n边形的每个内角都等于(n-2)×180°/n。
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长。
27.正三角形面积√3a/4 a表示边长。
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
29.弧长计算公式:L=n兀R/180。
30.扇形面积公式:S扇形=n兀R^2/360=LR/2。
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)。
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半。
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径。
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r。
1.直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2.特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3.淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4.逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5.数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
常用的数学思想方法
1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3.分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;
这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4.待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5.配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6.换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7.分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8.综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9.演绎法:由一般到特殊的推理方法。
10.归纳法:由一般到特殊的推理方法。
初中数学归纳总结8
首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。
充分的利用好上课的时间,上课时间你所掌握的知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。
学习最重要的是思考,会思考数学才能学好,数学中的`题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。
初中数学归纳总结9
一、初中数学教学结课所遵循的原则
(一)巩固性原则。结课遵循巩固性原则是课堂结尾最基本的要求,一个教师在结课时都应该做到这一点,梳理所传授的知识的结构,将相关知识放在一起进行分析比较,着重强调重要的概念、定理和公式等,巩固基础知识和基本技能,加深学生对知识的印象。
(二)多样性原则。很多人在教学时都是用布置作业来结束课堂,其实,结课不应该仅仅局限于布置作业,它应该是灵活多变的,可以根据教师与学生的区别、课型与教学内容的差异,甚至不同的教学情境来选择相应的结课方式。满足多样性的原则。
(三)概括性原则。一节课四十多分钟,教师往往向学生传授了很多知识,在课程的结尾,教师要学会对整节课所传授的内容进行高度地概括,语言要尽量简练,使学生能加深印象,掌握知识的规律和窍门,能做到学以致用。
(四)灵活性原则。教学情况是不确定的,变化的,因此,数学教学中的结课要满足灵活性原则,对于意料之外的教学情境,教师要做到灵活应变,因势利导,尽量让结课做到圆满,使整节课都精彩纷呈。
(五)发展性原则。初中数学教学的结课遵循发展性原则,要求教师在进行结课时对课堂知识进行延展和深化,给学生留下一定的探究空间,引导学生自主地发现问题、分析问题、解决问题。
二、初中数学教学结课方式
(一)归纳总结法。在初中数学教学当中,归纳总结法是使用最为广泛的一种结课方法。利用归纳总结法进行结课,教师需要对本节课的主要讲授内容进行总结,对重点与难点进行强调。在归纳总结法引导的结课环节当中,学生会再次建立一个数学知识体系,为自己的知识体系进行补充与明确。学生对于数学课堂学习内容的完整印象往往来自于归纳总结式的结课,同时,这对于学生总结能力与概括能力的提高较为有利。比如在进行“平行四边形”的讲解之时,教师可以这样进行结课:本节课我们学习的对象是平行四边形,在课上我们由生活实例引出了平行四边形的定义。
通过对比分析,总结出平行四边形的性质。同学们要做的就是在课下进行复习,重点掌握平行四边形的性质以及运用方法。这样的归纳,可以让学生对课堂学习内容进行回顾,明确自己是否已经掌握课堂的重点与难点。但是,归纳总结法对于学生学习兴趣的激发并没有明显的作用,是一种较为中规中矩的结课方式。因此,在运用归纳总结法进行结课之时,教师要加强对结课语言的重视,利用轻松的语气与平等的语言使课堂氛围得以缓解。
(二)练习巩固法。初中数学课堂上,教师对数学知识进行讲授,其最终目的就是让学生利用数学知识解决现实问题。在教师讲解的引导之下,学生所获得的数学知识都是间接知识。通过练习,学生可以获得直接的知识,更可以通过练习发现自己掌握不足之处。练习巩固法是对学生数学知识应用能力促进作用最为明显的一种结课方法。教师在课堂的末尾,利用学生能力所及范围之内的习题,再次集中学生的`注意力,推动其运用刚刚学会的知识。
拿“三视图”的讲解来说,教师在课上要为学生讲解三视图的原理与三视图的画法。而三视图只有在学生亲身应用之后,才能更加明白。因此,在离下课还有十分钟或者五分钟的时候,教师可以为学生安排练习,让学生自己进行三视图的绘制。
(三)设置悬念法。设置悬念法是最受推崇的结课方法,利用悬念的设置结束一节初中数学课,可以为学生留下最大的悬念。设置悬念的方法有很多,教师可以利用对已学知识的回顾,引导学生从中发现学习的不完整性或者漏洞。在进行回顾的时候,引导学生提出问题,多问几个为什么,多找到疑惑之处,这对于下一节课中学生的学习热情激发有着重要的影响。在结课时间段内,教师重复此条性质,引导学生将正方形引入到长方形当中。教师可以对学生提问:同学们,正方形与长方形有着同样的性质,那么正方形与长方形有着什么样的关系呢?在教师的疑问下,学生也会就此进行思考,对于下节课充满好奇。
(四)情感激励法。情感激励法是极具有创新意义的初中数学结课方法,教师利用饱满的热情对初中数学知识的应用范围进行表达,可以引起学生对于已学知识的重视。在情感激励之下,学生会与教师产生共鸣,共同投入到初中数学的学习活动当中去。在应用情感激励方法进行结课时,教师一定要关注自身的真情实感,引导学生入境。
对于“统计”教学来讲,在课堂的结尾,教师可以利用国家与社会发展衡量数据GDP为学生做统计作用的介绍,对学生的学习进行激励。教师可以这样进行结课:GDP增长率体现着我国社会经济发展的前景,也肯定着社会经济发展成果。而GDP增长率的出现很大程度上依赖于我们这节课上你们学到的数学知识。所以,同学们,学好统计知识,可以使你成为一个社会分析小专家,洞察社会的进步与发展。这样的结课,可以使学生热血沸腾,找到学习成就感。
初中数学归纳总结10
一.行程问题
行程问题要点解析
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
二、利润问题
每件商品的'利润=售价-进货价毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率利率的换算:
年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1x)b或a(1x)b
初中数学归纳总结11
一元一次方程定义
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。
一元一次方程的五个核心问题
一、什么是等式?1+1=1是等式吗?
表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的'字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。
一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同,等式中含有等号,代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。
二、什么是方程,什么是一元一次方程?
含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。
只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。
凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。
三、等式有什么牛掰的基本性质吗?
将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。
移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。
去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。
四、等式一定是方程吗?方程一定是等式吗?
等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。
五、"解方程"与"方程的解"是一回事儿吗?
方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。
初中数学归纳总结12
一、在创新中培养学生的归纳意?R
在初中数学教学中,重点是对学生的创新精神和实践能力的培养,体现出现代素质教育。学生创新能力的培养在学习中占据非常重要的作用,在创新中学生可以巩固自身所学的知识,使数学知识在自己的头脑中根深蒂固,各类知识点在学生的头脑中形成清晰的框架,有助于学生归纳意识的培养。归纳意识的培养,可以减轻学生的学习负担,提升学生对知识的理解能力。
初中生在学习数学的环节中,常常会接触到大量的图像,在数学学习中,老师应该鼓励学生大胆创新,在创新环节中完成对知识点的归纳。数学学习并不死板,不仅仅学习教科书上的知识,还应该学习书本以外的知识,从而创新自己的思维。例如在进行函数的学习中,老师可以让学生绘制函数图像,对函数进行分类讨论,从而掌握递增函数和递减函数的定义,在分类讨论后,学生结合图像进行归纳。在数学教学中,老师不仅仅要重视书本上的逻辑内容,而且在把握逻辑内容的基础上,将图像和数学知识有机结合起来,使学生可以大胆创新。很多学生在数学学习中存在困难,认为数学的学习就是解答大量的难题,他们在大量的题海战术后不善于归纳,导致数学学习的效率不高。
二、在交流中归纳知识点
在数学学习中,如果学生只是自己探究,那么在学习中不会得到灵感。数学学习不仅仅要求学生具有认真的钻研态度,而且也需要老师帮助学生养成归纳的意识。沟通和交流不仅仅在语言的学习中发挥非常重要的作用,而且在数学学习中同样非常重要。学生在解答数学问题中,常常会遇到一些问题,学生自己探究会陷入到死胡同中,需要老师和同学的帮助才能进一步完成。
为了切实在初中数学教学中培养学生的归纳意识,老师可以将班级内的学生分成几个不同的小组,组内的同学可以通过合作的方式,对知识点进行归纳,在数学的学习中更加变通,将数学这门学科应用到生活中。
例如,在进行二次函数的学习中,老师可以将学生分成不同的小组,留给学生充足的时间,让他们互相帮助,在沟通中对知识点进行归纳。学生很快就能得到结论,如果函数有两个解,那么函数与数轴会有两个交点,如果方程只有一个解,那么函数与数轴只有一个交点,如果方程没有解,那么函数与数轴没有交点。学生通过分组讨论的方式得到结论,通过归纳,学生对二次函数知识点的印象非常深刻。
三、学会正确归纳
在数学学习中,归纳思想非常重要,数学这门学科的知识非常细碎,是一门系统性很强的学科。数学知识错综复杂,很多学生在学习数学中力不从心,掌握合理的归纳方式,可以切实提升学生的'数学成绩。初中生的思维还不是特别完善,在进行数学学习环节中,对知识点进行合理的归纳,是每位老师应该采取的方法。如果学生不懂得归纳,那么在数学考试中,学生会将知识点混淆。为了提升学生的归纳能力,老师在课堂上应该将一些容易混淆和容易出现错误的习题让学生总结。
例如,在学习圆和直线这部分内容中,老师都会将重点内容,圆和圆的位置关系,直线和圆的位置关系进行重点分析。老师可以借助一些参考书目和资料,总结一些相似的题目,让学生在课堂上解答这些题目,使学生对这部分知识点进行总结,从而加深对这部分知识的理解。归纳思想在数学学习中应用非常多,在进行初中数学教学环节中,学生应该花更多的时间进行归纳。在进行初中数学的学习中,学生归纳意识的养成可以完善学生的数学思维,学生学会归纳,在学习中就会如鱼得水,在考试中取得好成绩。
四、在反思中完成知识点的归纳
初中数学归纳总结13
初中数学是学生学习数学的基础,主要帮助学生建立一个坚实的数学基础,使学生在以后学习深层次的数学时,能够冷静、从容地面对.在数学学习过程中,需要显示具备归纳推理的意识,通过一种思想类型的题目的练习后,需要显示进行归纳总结这种类型题目所包含的思想与规律,以便在下次做题时,学生能够快速地获得解题思路,提高学生的做题效率.归纳与推理对于学生以后的生活也会有很大的帮助.因此,在初中数学教学中,教师应该重视归纳推理意识的渗透.
一、传统教学存在的不足
在初中数学教学过程中,有些教师忽略了渗透归纳推理意识,这对学生的解题效率产生很大的影响,也不利于提高学生对问题的探索能力,而初中教学的主要目的就是提高学生的探索意识和逻辑思维能力.在做题过程中,教师没有积极地引导学生对思想相似的题目进行归纳总结,长此以往,就会导致在解题过程中发现,越来越多的自己以前做过的题目,再次遇到与之相似的题目时,没有解决的思路,需要不断地请教别人,让别人帮助自己解决,逐渐消磨学生学习数学的兴趣.兴趣是学生学习的动力和源泉.学生有了学习兴趣,就会热爱学习,积极参与学习活动,对学习效率的提高有积极的作用.归纳推理意识的提高,需要教师在教学中进行有效的渗透.教师没有正确地引导学生对知识的归纳与推理的练习,就不能使学生透彻地理解解题技能的关键本质,从而影响了学生数学解题能力的提升.
二、对学生进行归纳推理意识渗透的重要性
学生拥有对知识的.归纳和推理的能力,对于数学科目的学习有重要影响,数学问题都有相应的思想,所以学生通过将所遇到的思想类似的题目进行归纳,可以加深他们对这类题目的理解与记忆,在下次遇到这种类型的题目时,学生能够快速地获得解题思路,从而提高了学生的解题速率.当学生可以快速地解决掉一道题时,对增强学生的信心有积极的作用.归纳推理意识的渗透,能够帮助学生主动探究数学题目中的规律,有利于学生的解题效率的提升,调动学生学习的主动性和积极性,提高学生课堂学习的参与度,激发学生学习数学的兴趣.
三、如何有效地进行归纳推理意识的渗透
在教学过程中,教师可以在学习一个新的知识点之前,通过一些与之相关思想的例题,让学生进行解答,让学生无意识中对将要学习的知识点有了初步的了解,进行这一知识点教学时,学生可以深入地了解这一知识点.这样的方式,就是教师通过对知识点的渗透,让学生在深入理解的基础上,可以更好地进行归纳,也有助于学生的记忆.例如,在讲“一元二次方程”时,教师可以列出3个方程:(2-x)(3+x)=1;2=(2x-5)(6-x);3=(5+3x)(2-x).观察这些方程,学生可以通过一些转化将这三个方程转化为0=-x2-x+5;0=-2x2+17x-32;0=-3x2+x+7.不难观察出,这些方程都只含有一个未知数,而且这些方程中未知数的最高指数都为2.在不知道这是一元二次的方程这一概念时,学生通过自己的观察,了解这类方程的特点,接下来学习一元二次方程时,学生就会惊奇地发现,这就是前面老师让我们观察的方程.这样,学生就能够深入理解一元二次方程这一概念.在进行相关知识点渗透前,教师要选取合适的例子,需根据学生的知识基础选取与学生水平基础相应的例子.只有这样,才有利于学生的理解.因此,进行有效的归纳推理意识的渗透,对教学效率有着积极的影响.
四、结语
总之,在初中数学教学渗透归纳推理意识,对于学生学习数学有很大的促进作用,所以教师应该注重这一思想.教师应投入更多的精力,将归纳推理意识有效地渗透到数学教学中.这种意识,能够激发学生的学习兴趣,对提高学生的逻辑思维能力和问题探索能力有促进作用,从而提高学生的综合能力.
初中数学归纳总结14
一、一次函数图象y=kx+b
一次函数的图象可以由k、b的正负来决定:
k大于零是一撇(由左下至右上,增函数)
k小于零是一捺(由右上至左下,减函数)
b等于零必过原点;
b大于零交点(指图象与y轴的交点)在上方(指x轴上方)
b小于零交点(指图象与y轴的交点)在下方(指x轴下方)
其图象经过(0,b)和(—b/k,0)这两点(两点就可以决定一条直线),且(0,b)在y轴上,(—b/k,0)在x轴上。
b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。
二、不等式组的解集
1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1。
2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a
A的解集是解集小小的取小
B的解集是解集大大的取大
C的解集是解集大小的小大的取中间
D的解集是空集解集大大的小小的无解
另需注意等于的问题。
三、零的描述
1、零既不是正数也不是负数,是介于正数和负数之间的数。零是自然数,是整数,是偶数。
A、零是表示具有相反意义的量的基准数。
B、零是判定正、负数的界限。
C、在一切非负数中有一个最小值是0;在一切非正数中有一个最大值是0。
2、零的运算性质
A、乘方:零的正整数次幂都是零。
B、除法:零除以任何不等于零的数都得零;零不能作除数;0没有倒数。
C、乘法:零乘以任何数都得零。ab=0a、b中至少有一个是0。
D、加法a、b互为相反数a+b=0
E、减法(比较大小用)a—b=0a=b;a—b0ab;a—b0a
3、在近似数中,当0作为有效数字时,它表示不同的精确度,不能省略。
四、因式分解分解方法
首先提取公因式,然后依次用公式,十字相乘,分组分解法,若都不行,再拆项添项试一试。必须进行到每一个多项式因式不能再分解为止
1、提公因式法
首先观察多项式的结构特点,确定多项式的'公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。
2、公式
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2,还立方差和及其他公式
3、十字相乘
运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解。
将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数。
4、分组分解法
多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
再提公因式(m+n)
a(m+n)+b(m+n)
=(m+n)?(a+b)。
可见如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。
【初中数学归纳总结】相关文章:
初中数学圆的知识点总结归纳05-03
初中数学知识点总结归纳04-12
初中数学知识点归纳总结11-24
初中数学知识点总结归纳通用01-31
初中数学圆的知识点归纳总结大全05-03
初中数学知识点归纳总结精品01-22
数学知识点归纳总结02-04
高一数学函数知识点归纳总结03-20
高一数学知识点总结归纳05-21
初中数学总结04-28