高一数学知识总结

时间:2024-09-29 14:31:31 热门总结 我要投稿

高一数学知识总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,写总结有利于我们学习和工作能力的提高,为此要我们写一份总结。总结怎么写才不会千篇一律呢?以下是小编精心整理的高一数学知识总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一数学知识总结

高一数学知识总结1

  圆的方程定义:

  圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

  直线和圆的位置关系:

  1、直线和圆位置关系的判定方法一是方程的.观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

  ①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。

  方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

  ①dR,直线和圆相离、

  2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

  3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

  切线的性质

  ⑴圆心到切线的距离等于圆的半径;

  ⑵过切点的半径垂直于切线;

  ⑶经过圆心,与切线垂直的直线必经过切点;

  ⑷经过切点,与切线垂直的直线必经过圆心;

  当一条直线满足

  (1)过圆心;

  (2)过切点;

  (3)垂直于切线三个性质中的两个时,第三个性质也满足。

  切线的判定定理

  经过半径的外端点并且垂直于这条半径的直线是圆的切线。

  切线长定理

  从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

高一数学知识总结2

  考点一、映射的概念

  1、了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多。

  2、映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping)。映射是特殊的对应,简称“对一”的对应。包括:一对一多对一。

  考点二、函数的概念

  1、函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(x),xA。其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

  2、函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

  3、区间的概念:设a,bR,且a

  ①(a,b)={xa

  ②(a,+∞)={>a}

  ③[a,+∞)={≥a}

  ④(—∞,b)={

  考点三、函数的`表示方法

  1、函数的三种表示方法列表法图象法解析法

  2、分段函数:定义域的不同部分,有不同的对应法则的函数。

  注意两点:

  ①分段函数是一个函数,不要误认为是几个函数。

  ②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

  考点四、求定义域的几种情况

  ①若f(x)是整式,则函数的定义域是实数集R。

  ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集。

  ③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合。

  ④若f(x)是对数函数,真数应大于零。

  ⑤因为零的零次幂没有意义,所以底数和指数不能同时为零。

  ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合。

  ⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题。

高一数学知识总结3

  1.定义等差数列

  如果一个数列从第二项开始,每个数列与前一项的差异等于相同的常数,则该数列称为等差数列,通常用字母d表示。

  2.等差数列的通项公式

  若等差数列{an}的首项是a1,公差是d,通项公式为an=a1 (n-1)d。

  3.等差中项

  如果A=(a b)/2,所以A叫a和b等差中项。

  4.等差数列的常用性质

  (1)推广通项公式:an=am (n-m)d(n,m∈N_)。

  (2)若{an}和m n=p q,则am an=ap aq(m,n,p,q∈N_)。

  (3)若{an}等差数列,公差为d,则ak,ak m,ak 2m,…(k,m∈N_)是公差为md的等差数列.

  (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

  (5)S2n-1=(2n-1)an。

  (6)若n为偶数,则S偶-S奇=nd/2;

  若n为奇数,则S奇-S偶=a中(中间项)。

  注意:

  一个推导

  前n项和公式采用倒序相加法推导等差数列:

  Sn=a1 a2 a3 … an,①

  Sn=an an-1 … a1,②

  ① ②得:Sn=n(a1 an)/2

  两个技巧

  要善于设置三个或四个数组成等差数列的问题。

  (1)如果奇数数数成等差数列并和定值,则可以设置为…,a-2d,a-d,a,a d,a 2d,….

  (2)如果偶数数成等差数并且和定值,则可以设置为…,a-3d,a-d,a d,a 3d,…,根据等差数列的定义,对称设元。

  四种方法

  判断等差数列的`方法

  (1)定义法:对n≥验证2的任意自然数an-an-一是同一常数;

  (2)等差中项法:验证2an-1=an an-2(n≥3,n∈N_)都成立;

  (3)通项公式法:验证an=pn q;

  (4)前n项和公式法验证:Sn=An2 Bn。

  注:后两种方法只能用来判断是否等差数列,而不能用来证明等差数列。

  高一数学知识点汇总

  两个复数相等的定义:

  假如两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a bi=c di。

  a=c,b=d。特殊地,a,b∈R时,a bi=0

  a=0,b=0.

  复数相等的充要条件为解决复数问题提供了一种方法。

  特别提醒复数相等:

  一般来说,两个复数只能说是相等或不相等的,而不是大小。如果两个复数都是实数,可以比较大小,只有两个复数都是实数的时候才能比较大小。

  解决数相等问题的方法步骤:

  (1)将给定的复数化为复数的标准形式;

  (2)根据复数相等的充要条件解决。

高一数学知识总结4

  定义:

  形如y=x^a(a为常数)函数,即以底数为自变量幂为变量,指数为常数函数称为幂函数。

  定义域和值域:

  当a为不同值时,功率函数的定义域如下:如果a为任何实数,则函数的定义域大于0;如果a为负,则x不能为0,但此时函数的定义域必须根据q的奇偶性确定,即如果q为偶数,则x不小于0,则函数的定义域大于0;如果q为奇数,函数的定义域不等于0的所有实数。当x是不同的值时,功率函数值域的不同情况如下:当x大于0时,函数值域总是大于0。当x是不同的值时,功率函数的值域的不同情况如下:当x大于0时,函数的值域总是大于0的实数。当x小于0时,只有Q是奇数,函数的值域是非零实数。只有a为正数,0才能进入函数的值域。

  性质:

  对a的取值为非零有理数,有必要分几种情况来讨论各自的特点:

  首先,我们知道如果a=p/q,q和p都是整数,然后x^(p/q)=q次根号(x如果q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0, ∞)。当指数n为负整数时,设置a=-k,则x=1/(x^k),显然x≠0.函数的定义域是(-∞,0)∪(0, ∞).因此,我们可以看到x的限制来自两点。首先,它可以作为分母而不是0。首先,它可能在偶尔的根号下不是负数,因此我们可以知道:

  排除0和负数的.可能性,即对x>0.a可以是任何实数;

  排除为0的可能性,即对x

  排除为负数的可能性,即所有x大于等于0的实数,a不能是负数。

  拓展阅读:高考数学应试技能

  定期重复巩固

  即使复习的内容还是要定期巩固,复习的次数也要随着时间的增加而逐渐减少,间隔也可以逐渐延长。当天可以巩固新知识,每周总结,每月分阶段总结,期中期末全面系统的学期复习。从内容上看,每节课的知识都要立即复习,每个单元都要整理知识,每章都要总结知识。相关知识必须串联在一起,形成知识网络,全面把握知识和方法。

  科学合理的安排

  复习一般可分为集中复习和分散复习。实验表明,除特殊情况外,分散复习的效果优于集中复习。分散复习,可以适当分类需要记住的材料,交替学习、娱乐或休息,以免单调使用某种思维方式,形成疲劳。分散复习还应结合各自的认知水平和记忆材料的特点,掌握重复次数和间隔时间,不是间隔时间越长越好,而是适合自己的复习规则。

  3.认真审题,耐心回答,规范准确,减少错误

  计算能力和逻辑推理能力是考试大纲中明确规定的两种培养能力。可以说是学好数学最基本的两种能力,数学试卷考试无处不在。而且在年度阅卷中,由于这两种能力差,失分占了相当大的比例。因此,在数学复习中,除了注重知识、问题类型、方法等方面的教学外,还应通过各种方式和机会提高和规范学生的计算能力和逻辑推理能力。

高一数学知识总结5

  考点要求:

  1、几何体的展开图、几何体的三视图仍是高考的热点。

  2、三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。

  3、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。

  4、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

  知识结构:

  1、多面体的结构特征

  (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

  正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

  (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

  正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

  (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

  2、旋转体的结构特征

  (1)圆柱可以由矩形绕一边所在直线旋转一周得到。

  (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

  (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

  (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

  3、空间几何体的三视图

  空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的.形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

  三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

  4、空间几何体的直观图

  空间几何体的直观图常用斜二测画法来画,基本步骤是:

  (1)画几何体的底面

  在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

  (2)画几何体的高

  在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

高一数学知识总结6

  集合与元素

  一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

  例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;

  而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的.一分子,是一个元素。

  班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

  .解集合问题的关键

  解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。

高一数学知识总结7

  集合

  (1)含n个元素的子集数为2^n,真子集数为2^n-1;非空真子集数为2^n-2;

  (2)注意:讨论时不要忘记。

  (3)函数和导数的第二部分

  1.映射:注意①第一集中的元素必须有象;②一对一,或多对一。

  2.函数值域的求法:①分析法;②配方法;③判别式法;④单调使用函数;⑤换元法;⑥使用均值不等式;⑦利用数字组合或几何意义(斜率、距离、绝对值等);⑧使用函数有界性;⑨导数法。

  3.复合函数的相关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]定义域由不等式定义a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判断:

  ①首先将原函数分解为基本函数:内函数和外函数;

  ②研究各自定义域内内内外函数的'单调性;

  ③判断原函数在其定义域的单调性,根据同性增加,异性减少。

  注:外函数的定义域是内函数的值域。

  4.分段函数:值域(最值)、单调性、图像等问题,先分段解决,再下结论。

  5.函数的奇偶性

  (1)函数的定义域是函数奇偶性的必要条件;

  (2)在原点对称的单调范围内:奇函数具有相同的单调性,偶函数具有相反的单调性;

  (3)如果给出的函数的分析比较复杂,应先等价变形,再判断其奇偶性;

高一数学知识总结8

  1.函数的单调性(局部性质)

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2)图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的

  (3)函数单调区间与单调性的判定方法

  (A)定义法:

  a.任取x1,x2D,且x1

  b.作差f(x1)-f(x2);

  c.变形(通常是因式分解和配方);

  d.定号(即判断差f(x1)-f(x2)的正负);

  e.下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:同增异减

  注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2)奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的'特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  a.首先确定函数的定义域,并判断其是否关于原点对称;

  b.确定f(-x)与f(x)的关系;

  c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

  注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)f(x)=0或f(x)/f(-x)=1来判定;(3)利用定理,或借助函数的图象判定.

  9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  1)凑配法

  2)待定系数法

  3)换元法

  4)消参法

  10.函数最大(小)值(定义见课本p36页)

  a.利用二次函数的性质(配方法)求函数的最大(小)值

  b.利用图象求函数的最大(小)值

  c.利用函数单调性的判断函数的最大(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学知识总结9

  函数的相关概念

  1.函数概念:设置A、B是非空数集,如果根据确定的对应关系f,集合A中的任何数字x,集合B中有唯一确定的数字f(x)对应它,那就叫吧f:A→B从集合A到集合B的函数.记作: y=f(x),x∈A.其中,x称为自变量,x值范围A称为函数定义域;与x值对应的y值称为函数值,函数值集合{f(x)| x∈A }称为函数值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数定义域。

  定义域时列不等式组的主要依据是:

  (1)分类分母不等于零;

  (2)偶次方根被开方数不小于零;

  (3)对数真数必须大于零;

  (4)指数和对数的底部必须大于零,不等于1.

  (5)如果函数是由一些基本函数通过四个运算组成的`然后,它的定义域是由x值组成的,使每个部分都有意义.

  (6)指数为零底不能等于零

  (7)实际问题中函数的定义域也要保证实际问题的有意义.

  u 判断相同函数的方法:

  ①表达式相同(与表示自变量和函数值的字母无关);

  ②定义域一致 (两点必须同时具备)

  2.值域 : 首先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3. 函数图像知识归纳

  (1)定义:在平面直角坐标系中,函数 y=f(x) , (x∈A)x是横坐标,函数值y是纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C每一点坐标(x,y)都符合函数关系y=f(x),反过来,满足y=f(x)每组有序实数对x、y为坐标的点(x,y),均在C上 .

  (2) 画法

  A、 描点法:

  B、 图象变换法

  有三种常用的转换方法

  1) 平移变换

  2) 伸缩变换

  3) 对称变换

  4.区间概念

  (1)区间分类:开区间、闭区间、半开半闭区间

  (2)无限区间

  (3)区间数轴表示.

  5.映射

高一数学知识总结10

  一、集合

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  u注意:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集-含有有限个元素的集合

  (2)无限集-含有无限个元素的集合

  (3)空集-不含任何元素的集合;例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:

  有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A

  2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

  即:① 任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A

  ③如果 AB, BC ,那么 AC

  ④ 如果AB 同时 BA 那么A=B

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

  u有n个元素的集合,含有2n个子集,2n-1个真子集

  二、函数

  1、函数定义域、值域求法综合

  2.、函数奇偶性与单调性问题的解题策略

  3、恒成立问题的求解策略

  4、反函数的几种题型及方法

  5、二次函数根的问题——一题多解

  &指数函数y=a^x

  a^a*a^b=a^a+b(a>0,a、b属于Q)

  (a^a)^b=a^ab(a>0,a、b属于Q)

  (ab)^a=a^a*b^a(a>0,a、b属于Q)

  指数函数对称规律:

  1、函数y=a^x与y=a^-x关于y轴对称

  2、函数y=a^x与y=-a^x关于x轴对称

  3、函数y=a^x与y=-a^-x关于坐标原点对称为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

  三、平面向量

  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法满足所有的'加法运算定律。数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。

高一数学知识总结11

  一、点、线、面概念与符号

  平面α、β、γ,直线a、b、c,点A、B、C;

  A∈a——点A在直线a上或直线a经过点;

  aα——直线a在平面α内;

  α∩β= a——平面α、β的交线是a;

  α∥β——平面α、β平行;

  β⊥γ——平面β与平面γ垂直.

  二、点、线、面常用定理

  1.异面直线判断定理

  过平面外一点与平面内一点的直线,和平面内不过该点的`直线是异面直线.

  2.线与线平行的判定定理

  (1)平行于同一直线的两条直线平行;

  (2)垂直于同一平面的两条直线平行;

  (3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;

  (4)如果两个平行平面同时和第三个平面相交,那么它们的交线平行;

  (5)如果一条直线平行于两个相交平面,那么这条直线平行于两个平面的交线.

  3.线与线垂直的判定

  若一条直线垂直于一个平面,那么这条直线垂直于平面内所有直线.

  4.线与面平行的判定

  (1)平面外一条直线和平面内一条直线平行,则该直线与此平面平行;

  (2)若两个平面平行,则在一个平面内的任何一条直线必平行于另一个平面.

高一数学知识总结12

  集合间的基本关系

  1。“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2。“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC

  ④如果AB同时BA那么A=B

  3。不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n个元素的集合,含有2n个子集,2n—1个真子集

  集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的'集合,叫做A,B的交集。记作AB(读作‘A交B’),即AB={x|xA,且xB}。

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作‘A并B’),即AB={x|xA,或xB})。

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

高一数学知识总结13

  空间点、直线、平面之间的位置关系

  以下知识点需要我们去理解,记忆。

  1、数学所说的直线是无限延伸的,没有起点,也没有终点。

  2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。

  3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

  4、过不在同一直线上的三点,有且只有一个平面。

  5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

  6、平行于同一条直线的两条直线平行。

  7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。

  8、直线与平面的'位置关系,直线与直线的位置关系是本节课的重点和难点。

  9、做位置关系的题目,可以借助实物,直观理解。

  一、直线与方程考试内容及考试要求

  考试内容:

  1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

  2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

  考试要求:

  1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

  2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直

  线的方程判断两条直线的位置关系。

高一数学知识总结14

  归纳1

  1、“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2、“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3、不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  归纳2

  形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  上面给出了k分别为正和负(2和—2)时的函数图像。

  当K>0时,反比例函数图像经过一,三象限,是减函数

  当K<0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  归纳3

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

  3、函数零点的求法:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

  4、二次函数的零点:

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

  归纳3

  形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K>0时,反比例函数图像经过一,三象限,是减函数

  当K<0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  归纳4

  幂函数的性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的`所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况、

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数无界。

  解题方法:换元法

  解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

  换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

高一数学知识总结15

  知识点1

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1、元素的确定性;

  2、元素的互异性;

  3、元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2、集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N或N+整数集Z有理数集Q实数集R

  关于“属于”的.概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分类:

  1、有限集含有有限个元素的集合

  2、无限集含有无限个元素的集合

  3、空集不含任何元素的集合例:{x|x2=—5}

  知识点2

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x—h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x—x?)(x—x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线x=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b^2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  知识点3

  1、抛物线是轴对称图形。对称轴为直线

  x=—b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b’2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  Δ=b’2—4ac>0时,抛物线与x轴有2个交点。

  Δ=b’2—4ac=0时,抛物线与x轴有1个交点。

  Δ=b’2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  知识点4

  对数函数

  对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

  (1)对数函数的定义域为大于0的实数集合。

  (2)对数函数的值域为全部实数集合。

  (3)函数总是通过(1,0)这点。

  (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

  (5)显然对数函数。

  知识点5

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

  3、函数零点的求法:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

  4、二次函数的零点:

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

【高一数学知识总结】相关文章:

高一数学知识点总结01-07

高一数学知识点总结归纳05-21

关于高一数学知识点总结05-08

高一数学知识点总结[优]01-10

高一必修二数学知识点总结07-11

高一必修一数学知识点总结04-09

高一必修二数学知识点总结归纳05-07

【集合】高一数学知识点总结15篇03-20

高一数学知识点总结汇总15篇06-25