初一数学上册知识点总结

时间:2025-10-23 10:18:56 热门总结 我要投稿

初一数学上册知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,他能够提升我们的书面表达能力,不如我们来制定一份总结吧。你想知道总结怎么写吗?以下是小编帮大家整理的初一数学上册知识点总结,希望能够帮助到大家。

初一数学上册知识点总结

初一数学上册知识点总结1

  角的性质:

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较

  (3)角可以参与运算。

  时针问题:

  时针每小时300,每分钟;分针每分钟60;时针与分针每分钟差。

  时针与分针夹角=分×—时×300(分针靠近12点)

  时针与分针夹角=时×300—分×(时针靠近12点)

  若结果大于1800,另一角度用3600减这个角度。

  经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的`时间。追及问题还可用追及度数/。

  角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  多边形

  由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。n边形内角和等于(n—2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n—2)×1800 / n,过n边形一个顶点有(n—3)条对角线,n边形共(n—3)×n / 2条对角线。

  圆、弧、扇形

  圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心

  弧:圆上A、B两点之间的部分叫做圆弧,简称弧。

  扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

  圆心角:顶点在圆心的角叫圆心角。

初一数学上册知识点总结2

  第一章丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

  2、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、常见的几何体及其特点

  长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。

  棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

  圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

  圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。球:由一个面(曲面)围成的几何体

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:11种

  6、截一个正方体:

  (1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  注意:①正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形。

  ②长方体、棱柱的截面与正方体的截面有相似之处。

  (2)用平面截圆柱体,可能出现以下的几种情况.

  (3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)

  (4)用平面去截球体,只能出现一种形状的.截面圆。

  (5)需要记住的要点:

  几何体截面形状正方体圆柱圆锥球

  7、三视图

  物体的三视图指主视图、俯视图、左视图。

  三角形、正方形、长方形、梯形、五边形、六边形圆、长方形、(正方形)、圆、三角形、圆主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。

  第二章有理数及其运算

  1、有理数的概念及分类

  正整数正整数整数零正有理数正分数有理数有理数零负整数①②

  正分数负整数分数负有理数负分数负分数整数和分数统称为有理数。

  注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数

  都看作分数.

  2、数轴:

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  3、相反数:

  只有符号不同的两个数叫做互为相反数,零的相反数是零。

  注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等。

  ②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。

  4、绝对值:

  (1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。

  零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。也可表示为:;

  绝对值的问题经常分类讨论;

  (2)绝对值的有关性质

  ①对任意有理数a,都有|a|≥0;

  ②若|a|=0,则a=0;

  ③若|a|=|b|,则a=b或a=-b;

  ④若|a|=b(b>0),则a=±b;

  ⑤若|a|+|b|=0,则a=0且b=0;

  ⑥对任意有理数a,都有|a|=|-a|。

  5、有理数大小的比较法则:

  在数轴上表示的两个数,右边的数总比左边的数大(大数—小数0,即右边的数—左边的数0);正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小。

  6、倒数:

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。正数的倒数是正数,负数的倒数是负数。

  倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的1倒数为a7、有理数加法法则:

  ①同号两数相加,取相同符号,并把绝对值相加。

  ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数同0相加,仍得这个数。

  一些巧算方法:a、互为相反的两个数,可以先相加;

  b、符号相同的数,可以先相加;

  c、分母相同的数,可以先相加;

  d、几个数相加能得到整数,可以先相加。

  8、有理数减法法则:

  减去一个数,等于加上这个数的相反数。有理数的加减法混合运算的步骤:

  ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

  ②可以利用加法则,加法交换律、结合律简化计算。

  9、有理数乘法法则:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘,积仍为0。

  135与如果两个数互为倒数,则它们的乘积为1。(如:—2与2、53等)

  乘法的交换律、结合律、分配律在有理数运算中同样适用。

  有理数乘法运算步骤:①先确定积的符号;

  ②求出各因数的绝对值的积。

  10、有理数除法法则:

  ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

  ②除以一个数等于乘以这个数的倒数。

  0除以任何非0的数都得0.0不可作为除数,否则无意义。

  11、乘方的概念

  (1)求几个相同因数的积的运算,叫做乘方,即nn个aaaaanan幂指数底数。在a中,a叫做底数,n叫做指数,a叫做幂.

  (2)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

  (3)据规律底数的小数点移动一位,平方数的小数点移动二位。210100

  注意:①一个数可以看作是本身的一次方,如5=51;

  ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

  (4)乘方的运算性质:

  ①正数的任何次幂都是正数;

  ②负数的奇次幂是负数,负数的偶次幂是正数;

  ③任何数的偶数次幂都是非负数;

  ④(除0以外任何数的0次方都得1)1的任何次幂都得1,0的任何次幂(除0次)都得0;

初一数学上册知识点总结3

  代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (分母中含有字母有除法运算的,那么式子叫做分式)

  1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。

  (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

  (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

  2、多项式

  (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

  (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

  (3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的.顺序排列起来,叫做把多项式按这个字母升幂排列。

  在做多项式的排列的题时注意:

  (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:a。先确认按照哪个字母的指数来排列。

  b、确定按这个字母降幂排列,还是升幂排列。

  3、整式:单项式和多项式统称为整式。

  4、列代数式的几个注意事项

  (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;

  (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。

  整式的加减运算

  1、同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。(同类项与系数无关,与字母排列的顺序也无关)。

  2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项。法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。不能合并的项单独作为一项,不可遗漏

  3、整式加减实质就是去括号,合并同类项。

  注:去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  4、几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2—b2 ; a与b差的平方是:(a—b)2 ;(本式中2为平方)

  (2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2 (本式中2为平方)

  数学数据的平均数中位数与众数知识点

  1、数据13,10,12,8,7的平均数是10。

  2、数据3,4,2,4,4的众数是4。

  3、数据1,2,3,4,5的中位数是3。

初一数学上册知识点总结4

  数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的`关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学上册知识点总结5

  第1章有理数及其运算

  复习目标:

  1、能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。

  2、能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。

  3、学会用科学记数法来表示较大的数,会根据精确度取近似数,能判断一个近似数是精确到哪一位。

  4、能运用有理数及其运算解决实际问题。

  基础知识:

  1、大于0的数叫做正数,在正数的前面加上一个“—”号就变成负数(负数小于0),0既不是正数,也不是负数。正数和负数表示的意义相反:例如上升/下降,增加/减少,收入/支出,盈利/亏损,零上/零下,东/西,顺时针/逆时针

  2、整数和分数统称为有理数。整数又分为正整数,0,负整数;分数分为正分数和负分数。

  3、规定了原点、正方向、单位长度的直线叫做数轴。任何一个有理数都能在数轴上找到唯一的点来表示(注意:并不是数轴上的每一个点都表示有理数,有一些点表示的是无理数例如π)

  4、数轴上两个点表示的`数,右边的数的总比左边的数大;正数都大于0,负数都小于0,正数总是大于负数。

  5、只有符号不同的两个数互为相反数。一般地,a和—a是一对互为相反数;特殊地,0的相反数是0。互为相反数的两个数绝对值相等(绝对值为a的数有两个:a和—a)。

  6、在数轴上表示一个数的点与原点之间的距离叫做这个数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是0;(绝对值是一个非负数)。两个负数比较大小,绝对值大的反而小。

  7、有理数加法法则:

  (1)同号两数相加,取加数的符号,并把绝对值相加;

  (2)异号两数相加:绝对值相等时和为0;绝对值不等时,取绝对值较大的加数的符号,并用大绝对值减去小绝对值;

  (3)任何一个数同0相加仍得这个数。

  8、有理数的减法法则:减去一个数,等于加上这个数的相反数;(减法其实就是加法。)

  9、加减混合运算统一看成是几个数的和的形式(省略加号和括号),根据加法的交换律和结合律进行运算。通常:

  (1)互为相反数相结合

  (2)符号相同相结合

  (3)分母相同的相结合

  (4)几个数相加得整数的相结合。

  10、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘积为0。多个数相乘看负因数的个数,偶数个则积为正,奇数个则积为负;并把所有因数的绝对值相乘。

  11、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不为0的数,都得0。

  12、乘积为1的两个数互为倒数,除以一个不为0的数等于乘以这个数的倒数;(除法其实就是乘法。)乘除混合运算统一化除为乘,再根据乘法法则进行运算。

  13、求几个相同因数的积的运算叫做乘方(特殊的乘法运算),乘方的结果叫做幂。其中,a叫做底数,n叫做指数。正数的任何次幂都是正数;0的任何次幂都是0;负数的偶数次幂是正数,奇数次幂是负数。

  14。有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号(先算小括号,再中括号,最后大括号)。

  15、科学记数法:把大于10的数表示成a×n的形式。(其中a是整数位只有一位10的数,n是正整数;n=原数的整数位数—1)。

  16、取近似数:精确到哪一位就看后一位,四舍五入。有效数字:从一个数的第一个非零数字起,到末位数字为止,所有的数字都是这个数的有效数字。(例如:有四个有效数字1、8、0、4。只有三个有效数字:6、6、8。)

初一数学上册知识点总结6

  一、单项式

  1、都是数字与字母的乘积的代数式叫做单项式。

  2、单项式的数字因数叫做单项式的系数。

  3、单项式中所有字母的指数和叫做单项式的次数。

  4、单独一个数或一个字母也是单项式。

  5、只含有字母因式的单项式的系数是1或―1。

  6、单独的一个数字是单项式,它的系数是它本身。

  7、单独的一个非零常数的次数是0。

  8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

  9、单项式的系数包括它前面的符号。

  10、单项式的系数是带分数时,应化成假分数。

  11、单项式的系数是1或―1时,通常省略数字“1”。

  12、单项式的次数仅与字母有关,与单项式的系数无关。

  二、多项式

  1、几个单项式的和叫做多项式。

  2、多项式中的每一个单项式叫做多项式的项。

  3、多项式中不含字母的项叫做常数项。

  4、一个多项式有几项,就叫做几项式。

  5、多项式的每一项都包括项前面的符号。

  6、多项式没有系数的概念,但有次数的概念。

  7、多项式中次数最高的项的次数,叫做这个多项式的次数。

  三、整式

  1、单项式和多项式统称为整式。

  2、单项式或多项式都是整式。

  3、整式不一定是单项式。

  4、整式不一定是多项式。

  5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

  四、整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

  3、几个整式相加减的一般步骤:

  (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  (2)按去括号法则去括号。

  (3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简。

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  五、同底数幂的乘法

  1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

  2、底数相同的幂叫做同底数幂。

  3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

  4、此法则也可以逆用,即:am+n = am﹒an。

  5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

  六、幂的乘方

  1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

  2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

  3、此法则也可以逆用,即:amn =(am)n=(an)m。

  七、积的乘方

  1、积的乘方是指底数是乘积形式的乘方。

  2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

  3、此法则也可以逆用,即:anbn=(ab)n。

  八、三种“幂的运算法则”异同点

  1、共同点:

  (1)法则中的底数不变,只对指数做运算。

  (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

  (3)对于含有3个或3个以上的运算,法则仍然成立。

  2、不同点:

  (1)同底数幂相乘是指数相加。

  (2)幂的乘方是指数相乘。

  (3)积的乘方是每个因式分别乘方,再将结果相乘。

  九、同底数幂的除法

  1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am—n(a≠0)。

  2、此法则也可以逆用,即:am—n = am÷an(a≠0)。

  十、零指数幂

  1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

  十一、负指数幂

  1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

  注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

  十二、整式的乘法

  (一)单项式与单项式相乘

  1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

  2、系数相乘时,注意符号。

  3、相同字母的幂相乘时,底数不变,指数相加。

  4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

  5、单项式乘以单项式的结果仍是单项式。

  6、单项式的'乘法法则对于三个或三个以上的单项式相乘同样适用。

  (二)单项式与多项式相乘

  1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

  2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

  3、积是一个多项式,其项数与多项式的项数相同。

  4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

  (三)多项式与多项式相乘

  1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

  2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

  3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

  4、运算结果中有同类项的要合并同类项。

  5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

  十三、平方差公式

  1、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的平方之差。

  2、平方差公式中的a、b可以是单项式,也可以是多项式。

  3、平方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

  4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

  (a+b)?(a—b)的形式,然后看a2与b2是否容易计算。

初一数学上册知识点总结7

  1.代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式。

  注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。2.列代数式的几个注意事项:

  13(1)带分数与字母相乘时,要把带分数改成假分数形式,如a×1应写成a;

  223(2)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  a3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;4.有理数:(1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数。不是有理数。p正整数正整数正有理数整数零正分数(2)有理数的分类:①有理数零②有理数负整数

  负整数正分数负有理数分数负分数负分数(3)注意:有理数中,1、0、-1是三个特殊的数。(4)自然数包括:0和正整数。5.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

  a(a0)a(a0)(2)绝对值可表示为:a0(a0)或a;绝对值的问题经常分类讨论;

  aa1a0;

  aa1a0;

  aba。b(4)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|,

  临渊羡鱼,不如退而结网!

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

  0.120.012底数的小数点移动一位,平方数的小数点移动二位。(4)据规律112101006.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  7.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  8.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。9.混合运算法则:先乘方,后乘除,最后加减;10.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

  11.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  ①.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。②.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。

  ③.一元一次方程解法的一般步骤:整理方程,去分母,去括号,移项,合并同类项,系数化为1(检验方程的解)。

  ④.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。12.列方程解应用题的常用公式:

  (1)行程问题:距离=速度时间速度距离距离时间;时间速度(2)工程问题:工作量=工效工时工效工作量工作量工时;工时工效(3)比率问题:部分=全体比率比率部分部分全体;全体比率(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折

  售价成本1,利润=售价-成本,利润率100%;

  成本10(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

  1S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

  3临渊羡鱼,不如退而结网!

  初一下册知识点总结

  1.同底数幂的乘法:aman=am+n,底数不变,指数相加。2.同底数幂的除法:am÷an=am-n,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积。4.零指数与负指数公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0)。注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:

  ①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:

  p(1)若二次三项式x+px+q是完全平方式,则有关系式:q;

  22

  2※(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。1※(3)注意:x2x2。

  xx2127.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。10.合并同类项法则:系数相加,字母与字母的指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  临渊羡鱼,不如退而结网!

  平面几何部分

  1、补角重要性质:同角或等角的补角相等.余角重要性质:同角或等角的余角相等.2、①直线公理:过两点有且只有一条直线.线段公理:两点之间线段最短.

  ②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

  比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.3、三角形的内角和等于180

  三角形的一个外角等于与它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任何一个内角4、n边形的对角线公式:

  n(n-3)2各个角都相等,各条边都相等的多边形叫做正多边形

  5、n边形的内角和公式:180(n-2);多边形的外角和等于3606、判断三条线段能否组成三角形:

  ①a+b>c(ab为最短的两条线段)②a-b

  扩展阅读:初中数学七年级上册知识点总结

  提分数学

  提分数学七年级上知识清单

  第一章有理数

  一.正数和负数

  ⒈正数和负数的概念

  负数:比0小的数正数:比0大的'数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。2.具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃

  支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

  二.有理数

  1.有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

  注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。2.(1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负p分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  提分数学

  正整数正有理数正分数(2)有理数的分类:①按正、负分类:有理数零

  负整数负有理数负分数正整数整数零②按有理数的意义来分:有理数负整数正分数分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  三.数轴

  ⒈数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

  提分数学

  4.数轴上特殊的最大(小)数

  ⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a提分数学

  ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。当a>0时,-a0,那么|a|=a;②如果a0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即

  提分数学

  |a|≥0;注意:|a||b|=|ab|,

  abab⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较

  ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大

  ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

  (3)正数的绝对值越大,这个数越大;(4)正数永远比0大,负数永远比0小;(5)正数大于一切负数;

  (6)大数-小数>0,小数-大数<0.5.绝对值的化简

  ①当a≥0时,|a|=a;②当a≤0时,|a|=-a6.已知一个数的绝对值,求这个数

  一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

  六.有理数的加减法.

  1.有理数的加法法则

  ⑴同号两数相加,取相同的符号,并把绝对值相加;

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0相加,仍得这个数。2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)

  在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加“相反数结合法”;

  提分数学

  ②符号相同的两个数先相加“同号结合法”;③分母相同的数先相加“同分母结合法”;④几个数相加得到整数,先相加“凑整法”;⑤整数与整数、小数与小数相加“同形结合法”。3.加法性质

  一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:⑴当b>0时,a+b>a⑵当b提分数学

  Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)--

  313217+-+-524528321137)+(-+)+(+-)55224818原式=(--

  =-1+0-

  =-1

  Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-3

  18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3

  18=+3

  183121-3+10-14834=(3

  31112-1)+(-3)+1044883=2

  12-3+102316=-3+13

  =10

  16617-12+41122151761)+(-)

  5151122Ⅴ.把带分数拆分后再结合(先拆分后结合)-3+10

  15原式=(-3+10-12+4)+(-+

  =-1+

  411+1522提分数学

  =-1+

  815+3030=-

  730Ⅵ.分组结合

  2-3-4+5+6-7-8+9+66-67-68+69

  原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)

  =0

  Ⅶ.先拆项后结合

  (1+3+5+7+99)-(2+4+6+8+100)

  七.有理数的乘除法

  1.有理数的乘法法则

  法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;

  法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数

  乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a

  1=1(a≠0),就是说aa和

  111互为倒数,即a是的倒数,是a的倒数。aaa1互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是;倒数是本身的数

  a是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.注意:①0没有倒数;

  ②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

  ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);④倒数等于它本身的数是1或-1,不包括0。3.有理数的乘法运算律

  提分数学

  ⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac4.有理数的除法法则

  (1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,即无意义(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得05.有理数的乘除混合运算

  (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  (2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

  a0八.有理数的乘方

  1.乘方的概念

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在a中,a叫做底数,n叫做指数。(1)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;

  0.120.01211(2)据规律2底数的小数点移动一位,平方数的小数点移动二位

  101002

  22

  n2.乘方的性质

  (1)负数的奇次幂是负数,负数的偶次幂的正数;注意:当n为正奇数时:(-a)=-a或(a-b)=-(b-a),当

  n为正偶数时:(-a)=a或(a-b)=(b-a).

  (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

  nnnnnnnn

  九.有理数的混合运算

  做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;

  3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  十.科学记数法

  把一个大于10的数表示成a10的形式(其中1a10,n是正整数),这种记数法是科学记数法

  -9-

  n提分数学

  近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原

  则.

  特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

  等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.

  第二章整式的加减

  一.用字母表示数(代数初步知识)

  1.代数式:用运算符号“+-÷”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。2.代数式书写规范:

  (1)数与字母相乘,或字母与字母相乘中通常使用“”乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;13(4)带分数与字母相乘时,要把带分数改成假分数形式,如a1应写成a;

  223(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  a

  提分数学

  (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做

  a-b和b-a.

  出现除式时,用分数表示;

  (7)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a-b;a与b差的平方是:(a-b);

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数

  是:n-1、n、n+1;

  (4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:a,非正数是:-a.

  2222222

  二.整式

  1.单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。

  2.单项式的系数:单项式中的数字因数;单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  3.单项式的次数:一个单项式中,所有字母的指数和

  4多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。注意:(若a、b、c、p、q是常数)ax+bx+c和x+px+q是常见的两个二次三项式.

  5整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式2

  2

  单项式多项式.

  注意:分母上含有字母的不是整式。

  6.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,

  叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

  提分数学

  三.整式的加减

  1.合并同类项

  2同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  3合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

  4合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。5去括号去括号的法则:

  (1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“”号,把括号和它前面的“”号去掉,括号里各项的符号都要改变。

  6添括号法则:添括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号

  里的各项都要变号.

  7整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  8整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。

  第三章一元一次方程

  1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.

  4一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)

  1注意:未知数在分母中时,它的次数不能看成是1次。如3x,它不是一元一次方程。

  x5解一元一次方程

  提分数学

  方程的解:能使方程左右两边相等的未知数的值叫做方程的解;注意:“方程的解就能代入”验算!解方程:求方程的解的过程叫做解方程。

  等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。

  6移项

  移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。

  移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;(2)系数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。

  移项的作用:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。

  注意:移项时要跨越“=”号,移过的项一定要变号。

  7解一元一次方程的一般步骤:整理方程、去分母、去括号、移项、合并同类项、未知数的系数化为1;(检验方程的解)。

  注意:去分母时不可漏乘不含分母的项。分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解决问题

  列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。关键在于抓住问题中的有关数量的相等关系,列出方程。

  解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系9列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形

  提分数学

  各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  10实际问题的常见类型:

  (1)行程问题:路程=时间速度,时间=

  路程路程,速度=速度时间(单位:路程米、千米;时间秒、分、时;速度米/秒、米/分、千米/小时)

  (2)工程问题:工作总量=工作时间工作效率,工作效率工作时间工作总量;工作总量=各部分工作量的和;

  工作效率利润,售价=标价(1-折扣);进价工作总量;

  工作时间(3)利润问题:利润=售价-进价,利润率=

  (4)商品价格问题:售价=定价折

  售价成本1100%;,利润=售价-成本,利润率成本10(5)利息问题:本息和=本金+利息;利息=本金利率(6)比率问题:部分=全体比率比率部分部分全体;全体比率(7)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

  (8)等积变形问题:长方体的体积=长宽高;圆柱的体积=底面积高;锻造前的体积=锻造后的体积

  (9)周长、面积、体积问题:C圆=2πR,S圆=πR,C长方形=2(a+b),S长方形=ab,C正方形=4a,

  2

  1222322

  S正方形=a,S环形=π(R-r),V长方体=abc,V正方体=a,V圆柱=πRh,V圆锥=πRh.

  310.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  提分数学

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  第四章走进图形世界

  1、几何图形:

  现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。长方体、正方体、球、圆柱、

  圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

  平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。长方形、正方形、三角形、圆

  等都是平面图形。

  立体图形与平面图形:许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

  2、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

  包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线;线和线相交的地方是点;几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形圆柱柱体

  棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、

  生活中的立体图形球体

  (按名称分)圆锥

  椎体

  提分数学

  棱锥

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。棱柱的侧面有可能是长方形,也有可能是平行四边形。

  5、正方体的平面展开图:11种

  6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。7、三视图

  物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。

  平面图形的认识

  线段,射线,直线名称线段射线直线

  -16-

  不同点延伸性不能延伸只能向一方延伸可向两方无限延伸端点数21无联系线段向一方延长就成射线,向两方延长就成直线共同点都是直的线提分数学

  点、直线、射线和线段的表示在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示,如点A

  一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l,或者直线AB

  一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l,线段AB

  点和直线的位置关系有两种:

  ①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。

  线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(3)线段的中点到两端点的距离相等。

  (4)线段的大小关系和它们的长度的大小关系是一致的。(5)线段的比较:1.目测法2.叠合法3.度量法线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。

  M是线段AB的中点

  A

  直线的性质

  MB

  AM=BM=

  1AB(或者AB=2AM=2BM)2(1)直线公理:经过两个点有且只有一条直线。(2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。

  (5)两条不同的直线至多有一个公共点。

  经过两点有一条直线,并且只有一条直线;两点确定一条直线;点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

  提分数学

  直线桑一点和它一旁的部分叫做射线;两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

  角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  角的表示:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  用一副三角板,可以画出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”;度、分、秒是常用的角的度量单位。

  把一个周角360等分,每一份就是一度的角,记作1°;

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒记作“1””;角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。类似的,

  1°=60’,1’=60”

  还有叫的三等分线。

  AOB平分∠AOC∠AOB=∠BOC=

  1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)

  -18-

  C提分数学

  余角和补角

  ①如果两个角的和是一个直角等于90°,这两个角叫做互为余角,简称互余,其中一个角是另一个角的

  余角。用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β互余;反过来,如果∠α与∠β互余,那么∠α+∠β=90°

  ②如果两个角的和是一个平角等于180°,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180°

  ③同角(或等角)的余角相等;同角(或等角)的补角相等。

  对顶角

  ①一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个角叫做互为对顶角,其中一

  个角叫做另一个角的对顶角。

  注意:对顶角是成对出现的,它们有公共的顶点;只有两条直线相交时才能形成对顶角。

  ②对顶角的性质:对顶角相等

  如图,∠1和∠4是对顶角,∠2和∠3是对顶角

  2431

  ∠1=∠4,∠2=∠3

  平行线:

  在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

  注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

  (2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。平行线公理及其推论

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:

  提分数学

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。垂直:

  两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

  垂线的性质:

  性质1:平面内,过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。同一平面内,两条直线的位置关系:相交或平行。

  图形知识结构图:

  提分数学

  从不同方向看立体图形

  立体图形展开立体图形

  几何图形平面图形角的度量角角的大小比较余角和补角角的平分线同角(等角)的余角相等;同角(等角)的补角相等等角的余角相等

  直线、射线、线段

  平面图形平面图形

初一数学上册知识点总结8

  第一章 丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形

  柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  正有理数 整数

  有理数 零 有理数

  负有理数 分数

  2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

  5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=—a,则a≤0。

  正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

  6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  7、有理数的运算:

  (1)五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  (2)有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  (3)运算律

  加法交换律 加法结合律

  乘法交换律 乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

  第三章 整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  ※代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a—4)应写作;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

  2、整式:单项式和多项式统称为整式。

  ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:1、单独的一个数或一个字母也是单项式;

  2、单独一个非零数的次数是0;

  3、当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

  ②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:①同类项有两个条件:a、所含字母相同;b、相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章 基本平面图形

  2、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的.,无端点,不可度量,不能比较大小。

  3、线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

  12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

  第五章 一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  (2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

  6、解一元一次方程的一般步骤:

  (1)去分母

  (2)去括号

  (3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

  (4)合并同类项

  (5)将未知数的系数化为1

  第六章 数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学上册知识点总结9

  初一上学期数学知识点

  1、整式:单项式和多项式的统称叫整式。

  2、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3、系数;一个单项式中,数字因数叫做这个单项式的系数。

  4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5、多项式:几个单项式的.和叫做多项式。

  6、项:组成多项式的每个单项式叫做多项式的项。

  7、常数项:不含字母的项叫做常数项。

  8、多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。

  9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

初一数学上册知识点总结10

  (一)有理数及其运算

  一、有理数的基础知识

  1、三个重要的定义:

  (1)正数:像1、2.5、这样大于0的数叫做正数;

  (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;

  (3)0即不是正数也不是负数.

  2、有理数的分类:

  (1)按定义分类:

  正整数整数0负整数有理数正分数分数负分数

  (2)按性质符号分类:

  正整数正有理数正分数有理数0

  负整数负有理数负分数3、数轴

  数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.

  4、相反数

  如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.

  5、绝对值

  (1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离

  (2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:

  (a0)aa0(a0)

  a(a0)

  (3)两个负数比较大小,绝对值大的反而小

  二、有理数的运算

  1、有理数的加法

  (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.

  (2)有理数加法的运算律:

  加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)

  用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。

  2、有理数的减法

  (1)有理数减法法则:减去一个数等于加上这个数的相反数.

  (2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.

  (3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;

  3、有理数的乘法

  (1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0

  (2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac

  (3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.

  4、有理数的除法

  有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.

  5、有理数的乘法

  (1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.

  (2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算

  (1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.

  (2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.(2)整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.

  n4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.

  6.同类项:所含字母相同,并且相同字母的.指数也相同的单项式是同类项

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列(3)一元一次方程

  一、方程的有关概念

  1、方程的概念:

  (1)含有未知数的等式叫方程.

  (2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.

  2、等式的基本性质:

  (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或ac=bc

  (2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或

  abcc

  (3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a

  (4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换

  二、解方程

  1、移项的有关概念:

  把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.

  2、解一元一次方程的步骤:(1)去分母等式的性质2

  注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.

  (2)去括号去括号法则、乘法分配律

  严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.

  (3)移项等式的性质1

  越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面

  (4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变

  (5)系数化为1等式的性质2

  两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒

  (6)检验

  二、列方程解应用题

  1、列方程解应用题的一般步骤:

  (1)将实际问题抽象成数学问题;

  (2)分析问题中的已知量和未知量,找出等量关系;

  (3)设未知数,列出方程;

  (4)解方程;

  (5)检验并作答.

  2、一些实际问题中的规律和等量关系:

  (1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围

  (2)几种常用的面积公式:

  长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;

  梯形面积公式:S=1(ab)h,a,b为上下底边长,h为梯形的高,S为梯形面积;22圆形的面积公式:Sr,r为圆的半径,S为圆的面积;三角形面积公式:S1ah,a为三角形的一边长,h为这一边上的高,S为三角形的2面积.

  (3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长

  (4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.

  (5)打折销售这类题型的等量关系是:利润=售价成本.

  (6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系.

  (7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.

  (8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程

  (9)关于储蓄中的一些概念:

  本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.

  (4)图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形

  平面图形:三角形、四边形、圆等.主(正)视图从正面看

  2、几何体的三视图侧(左、右)视图从左(右)边看

  俯视图从上面看

  (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型

  4、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念

  图形直线射线线段端点个数表示法作法叙述无直线a直线AB(BA)作直线AB;作直线a一个射线AB作射线AB反向延长射线AB两个线段a线段AB(BA)作线段a;作线段AB;连接AB延长线段AB;反向延长线段BA延长叙述不能延长2、直线的性质

  经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法

  (2)用尺规作图法

  4、线段的大小比较方法(1)度量法(2)叠合法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系

  (1)点在直线上(2)点在直线外.(三)角

  1、角:由公共端点的两条射线所组成的图形叫做角

  2、角的表示法(四种):

  3、角的度量单位及换算

  4、角的分类∠β范围锐角0<∠β<90°直角∠β=90°钝角90°

初一数学上册知识点总结11

  一、正数和负数

  ⒈、正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数。

  注意:

  ①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的.量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:—8℃

  支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

  ⑵0是正数和负数的分界线,0既不是正数,也不是负数。

  二、有理数

  1、有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

  ⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。

  ①π是无限不循环小数,不能写成分数形式,不是有理数。

  ②有限小数和无限循环小数都可化成分数,都是有理数。

  注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。

  凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p

  分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;?不是有理数;

初一数学上册知识点总结12

  第一章 有理数

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.0即不是正数也不是负数。

  4.正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2.整数:正整数、0、负整数,统称整数。

  3.分数:正分数、负分数。

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5. ab = a +(b) 减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab= ba

  4.乘法结合律:(ab)c = a (b c)

  5.乘法分配律:a(b +c)= a b+ ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

  2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章 整式

  (一)整式

  1.整式:单项式和多项式的统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数:一个单项式中,数字因数叫做这个单项式的系数。

  4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减

  整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  第三章 一元一次方程

  分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  (一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

  (二)一元一次方程:

  1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

  2.解:求出的方程中未知数的值叫做方程的解。

  (二)等式的性质

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a= b,那么a± c= b± c

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  如果a= b,那么a c= b c;

  如果a= b,(c0),那么a ∕c = b ∕ c。

  (三)解方程的步骤

  解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

  1.去分母:把系数化成整数。

  2.去括号

  3.移项:把等式一边的某项变号后移到另一边。

  4.合并同类项

  5.系数化为1

  第四章 图形认识初步

  一、图形认识初步

  1、几何图形:把从实物中抽象出来的各种图形的统称。

  2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

  3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

  4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  5、点,线,面,体

  ①图形是由点,线,面构成的。

  ②线与线相交得点,面与面相交得线。

  ③点动成线,线动成面,面动成体。

  二、直线、线段、射线

  1、线段:线段有两个端点。

  2、射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  3、直线:将线段的两端无限延长就形成了直线。直线没有端点。

  4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。

  5、相交:两条直线有一个公共点时,称这两条直线相交。

  6、两条直线相交有一个公共点,这个公共点叫交点。

  7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

  8、线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)

  9、距离:连接两点间的线段的长度,叫做这两点的.距离。

  三、角

  1、角:有公共端点的两条射线组成的图形叫做角。

  2、角的度量单位:度、分、秒。

  3、角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

  4、角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

  ③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  ④工具:量角器、三角尺、经纬仪。

  5、余角和补角

  ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

  ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

  ③补角的性质:等角的补角相等

  ④余角的性质:等角的余角相等

初一数学上册知识点总结13

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程.

  2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

  注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的'检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

  二、等式的性质

  等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

  等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

  等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

  四、去括号法则

  1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1. 去分母(方程两边同乘各分母的最小公倍数)

  2. 去括号(按去括号法则和分配律)

  3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4. 合并(把方程化成ax = b (a≠0)形式)

  5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

  六、用方程思想解决实际问题的一般步骤

  1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

  2. 设:设未知数(可分直接设法,间接设法)

  3. 列:根据题意列方程.

  4. 解:解出所列方程.

  5. 检:检验所求的解是否符合题意.

  6. 答:写出答案(有单位要注明答案)

初一数学上册知识点总结14

  一元一次方程

  1、方程是含有未知数的等式。

  2、方程是等式,等式不一定是方程。

  3、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

  列方程

  1、分析实际问题中的数量关系,利用其中的.相等关系列出方程,是用数学解决实际问题的一种方法。

  2、列方程是解决问题的重要方法,利用方程可以解出未知数。

  解方程

  1、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。

  等式的性质

  1、等式的性质1等式两边同时加(减)同一个数(或式子),结果仍相等。

  2、等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  合并同类项

  1、把多项式中同类项合成一项,叫做合并同类项。

  移项

  把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

  去括号

  1、括号前面有_+_号,把括号和它前面的_+_号去掉,括号里各项的符号不改变

  2、括号前面是_—_号,把括号和它前面的_—_号去掉,括号里各项的符号都要改变成相反的符号。

初一数学上册知识点总结15

  ⒈、数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;

  ⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

  可;⑶同一数轴上的单位长度要统一;

  ⑷数轴的三要素都是根据实际需要规定的。

  2、数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3、利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的`数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4、数轴上特殊的(小)数

  ⑴最小的自然数是0,无的自然数;

  ⑵最小的正整数是1,无的正整数;

  ⑶的负整数是—1,无最小的负整数

  可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,则a=0

初一数学上册知识点总结16

  第一章、有理数知识框架

  一、知识概念

  1、有理数:

  q(p,q为整数且p0)p(1)凡能写成形式的数,都是有理数、正整数、0、负整数统称整数;

  正分数、负分数统称分数;整数和分数统称有理数、注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;不是有理数;

  正整数正有理数正分数有理数零负整数负有理数负分数正整数整数零有理数负整数正分数分数负分数②

  (2)有理数的分类:①

  2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3、相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数。

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  a(a0)a0(a0)(a0)aaa(a0);a(a0)或(2)绝对值可表示为:绝对值的问题经常分类讨论;

  5、有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数—小数>0,小数—大数<0。

  6、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a;若ab=1a、b互为倒数;若ab=—1a、b互为负倒数。

  7、有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8、有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

  9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

  10、有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11、有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac。a即无意义

  12、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,0。

  13、有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a—b)n=—(b—a)n,当n为正偶数时:(—a)n=an或(a—b)n=(b—a)n。

  14、乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18、混合运算法则:先乘方,后乘除,最后加减。

  本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题、

  体验数学发展的一个重要原因是生活实际的需要、激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

  第二章、整式的加减

  一、知识框架

  二、知识概念

  1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

  2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  3、多项式:几个单项式的'和叫多项式。

  4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

  通过本章学习,应使学生达到以下学习目标:

  1、理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

  2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

  3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

  4、能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

  在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  第三章、一元一次方程知识框架

  二、知识概念

  1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3、一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类项系数化为1(检验方程的解)。

  4、列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11、列方程解应用题的常用公式:

  速度距离距离时间时间速度;

  (1)行程问题:距离=速度时间

  (2)工程问题:工作量=工效工时

  工作量工作量工时工时工效;

  (3)比率问题:部分=全体比率

  部分部分全体全体比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;售价成本1利润率100%成本10。

  (5)商品价格问题:售价=定价折利润=售价—成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C

  正方形=4a,1S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=3πR2h、

  本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

  第四章、图形的认识初步知识框架

  本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形、通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系、在此基础上,认识一些简单的平面图形直线、射线、线段和角、本章书涉及的数学思想:

  1、分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

  2、方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

  3、图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

  4、化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n—1)/2的具体运用上来。

初一数学上册知识点总结17

  难点

  三角形内角和定理的推理的过程;

  在具体的图形中不重复,且不遗漏地识别所有三角形;

  用三角形三边不等关系判定三条线段可否组成三角形。

  知识点、概念总结

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余;

  推论2三角形的一个外角等于和它不相邻的两个内角和;

  推论3三角形的一个外角大于任何一个和它不相邻的'内角;

  三角形的内角和是外角和的一半。

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  2、分数与小数的互化

  重要程度——四颗星。最早接触到分数是在三年级的课本上,学习了分数的意义、比较大小和同分母的加减法,这里的分数则是更加全面的去学习、认识分数。其中分数的基本性质里面会有分数的化简、约分,这也是接下来数学中非常常用的运算性质(类似四年级学习的乘法分配率);分数的大小比较也不再是简单的同分母或者一个个体的比较,复杂的一些还需要用到“放缩法”;分数的乘除运算法则则是数学运算的基本功了,越熟练越好(让孩子多练)。孩子在学习过程中遇到的第一个难点,那就属分数的应用题了(学生不明白什么时候用乘法什么时候用除法),往年很多学生都分不清题目中的:整体(单位“1”)、部分和占比(率),误区是学生们总认为整体比部分要大,但是学习分数以后就不一定了;

  3、多边形外角和定理:

  (1) n边形外角和等于n·180°—(n—2)·180°=360°

  (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  4、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n—3)条对角线,把多边形分词(n—2)个三角形。

  (2)n边形共有n(n—3)/2条对角线。

初一数学上册知识点总结18

  初一数学三角函数知识点

  1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。

  2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

  3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

  4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

  5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)

  6、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

  7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

  初一数学知识点总结

  1、有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① ②

  2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3、相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0 ? a+b=0 ? a、b互为相反数。

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  5、有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数—小数> 0,小数—大数< 0。

  6、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=—1?a、b互为负倒数。

  7、有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的`符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8、有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;

  (2)加法的结合律:(a+b)+c=a+(b+c)。

  9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

  10、有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11、有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  12、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  13、有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (—a)n=—an或(a —b)n=—(b—a)n ,当n为正偶数时:(—a)n =an或(a—b)n=(b—a)n 。

  14、乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18、混合运算法则:先乘方,后乘除,最后加减。

初一数学上册知识点总结19

  (一)正负数

  1、正数:大于0的数。

  2、负数:小于0的数。

  3、即不是正数也不是负数。

  4、正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2、整数:正整数、0、负整数,统称整数。

  3、分数:正分数、负分数。

  (三)数轴

  1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2、数轴的三要素:原点、正方向、单位长度。

  3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  (四)有理数的加减法

  1、先定符号,再算绝对值。

  2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

  4、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(?b)减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2、乘积是1的两个数互为倒数。

  3、乘法交换律:ab=ba

  4、乘法结合律:(ab)c=a(bc)

  5、乘法分配律:a(b+c)=ab+ac

  (六)有理数除法

  1、先将除法化成乘法,然后定符号,最后求结果。

  2、除以一个不等于0的数,等于乘这个数的倒数。

  3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

  2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.3。同底数幂相乘,底不变,指数相加。

  4、同底数幂相除,底不变,指数相减。

  (八)有理数的加减乘除混合运算法则

  1、先乘方,再乘除,最后加减。

  2、同级运算,从左到右进行。

  3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章整式

  (一)整式

  1、整式:单项式和多项式的统称叫整式。

  2、单项式:数与字母的乘积组成的式子叫单项式。单独的`一个数或一个字母也是单项式。

  3、系数;一个单项式中,数字因数叫做这个单项式的系数。

  4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5、多项式:几个单项式的和叫做多项式。

  6、项:组成多项式的每个单项式叫做多项式的项。

  7、常数项:不含字母的项叫做常数项。

  8、多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。

  9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

初一数学上册知识点总结20

  1、有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3、相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;

  (3)相反数的和为0a+b=0a、b互为相反数。

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  (3)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|。

  5、有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数—小数>0,小数—大数<0。

  6、互为倒数:乘积为1的两个数互为倒数。

  注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=—1a、b互为负倒数。

  7、有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8、有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c)。

  9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

  10、有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11、有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac。

  12、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  13、有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a—b)n=—(b—a)n,当n为正偶数时:(—a)n=an或(a—b)n=(b—a).乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位。

  15、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18、混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。

  19、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。

  第二章整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。7.合并同类项法则:系数相加,字母与字母的指数不变。

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“—”号,括号里的各项都要变号。

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

  10。多项式的升幂和降幂排列:把一个多项式的各项按某个字母的.指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  第三章一元一次方程

  1.等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”!

  2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

  等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

  3.方程:含未知数的等式,叫方程。

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

  5.移项:改变符号后,把方程的项从一边移到另一边叫移项。移项的依据是等式性质1。

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。

  9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。

  10.列一元一次方程解应用题:

  (1)读题分析法:…………多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。(2)画图分析法:…………多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11.列方程解应用题的常用公式:

  (1)行程问题:距离=速度时间;

  (2)工程问题:工作量=工效工时;

  (3)比率问题:部分=全体比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

  (5)商品价格问题:售价=定价折,利润=售价—成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  12、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”

  13、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。

  14、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  15、平行线:

  在同一个平面内,不相交的两条直线叫做平行线。平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。

  注意:

  (1)平行线是无限延伸的,无论怎样延伸也不相交。

  (2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  16、平行线公理及其推论

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。

  (3)平行线的定义。

  17、垂直:

  两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

  18、垂线的性质:

  性质1:平面内,过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

  19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。

  20、同一平面内,两条直线的位置关系:相交或平行。

初一数学上册知识点总结21

  ⒈、相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2、相反数的性质与判定

  ⑴任何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3、相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4、相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“—”即可求得(如:5的相反数是—5);

  ⑵求多个数的和或差的'相反数时,要用括号括起来再添“—”,然后化简(如;5a+b的相反数是—(5a+b)。化简得—5a—b);

  ⑶求前面带“—”的单个数,也应先用括号括起来再添“—”,然后化简(如:—5的相反数是—(—5),化简得5)

  5、相反数的表示方法

  ⑴一般地,数a的相反数是—a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,—a<0(正数的相反数是负数)

  当a<0时,—a>0(负数的相反数是正数)

  当a=0时,—a=0,(0的相反数是0)

初一数学上册知识点总结22

  单项式

  1、单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。

  2、系数:单项式中的数字因数

  3、次数:单项式中所有的字母的指数和

  多项式

  1、几个单项式的和叫做多项式。

  2、每个单项式叫做多项式的'项。

  3、不含字母的项叫做常数项。

  4、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次

  整式

  1、单项式和多项式统称为整式。

  整式的加减

  1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

  2、把多项式中的同类项合并成一项,叫做合并同类项。

  3、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  合并同类项——去括号

  1、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

初一数学上册知识点总结23

  一、有理数

  知识网络:

  概念、定义:

  1、大于0的数叫做正数(positive number)。

  2、在正数前面加上负号“—”的数叫做负数(negative number)。

  3、整数和分数统称为有理数(rational number)。

  4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

  5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

  6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

  7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  8、正数大于0,0大于负数,正数大于负数。

  9、两个负数,绝对值大的反而小。

  10、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  (3)一个数同0相加,仍得这个数。

  11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

  12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  13、有理数减法法则:减去一个数,等于加上这个数的相反数。

  14、有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值向乘。

  任何数同0相乘,都得0。

  15、有理数中仍然有:乘积是1的两个数互为倒数。

  16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

  17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

  18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  19、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)

  22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何次幂都是0。

  23、做有理数混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,最后加减;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

  25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

  26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

  注:黑体字为重要部分

  二、整式的加减

  知识网络:

  概念、定义:

  1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

  2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

  3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

  4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。

  5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

  6、把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  三、一元一次方程

  知识网络:

  概念、定义:

  1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

  2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

  3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的'一种方法。

  4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  6、把等式一边的某项变号后移到另一边,叫做移项。

  7、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间

  盈亏问题:利润=售价—成本 利率=利润÷成本×100%

  售价=标价×折扣数×10% 储蓄利润问题:利息=本金×利率×时间

  本息和=本金+利息

  四、图形初步认识

  知识网络:

  概念、定义:

  1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。

  5、几何体简称为体(solid)。

  6、包围着体的是面(surface),面有平的面和曲的面两种。

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

  8、点动成面,面动成线,线动成体。

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。 简述为:两点确定一条直线(公理)。

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

  13、连接两点间的线段的长度,叫做这两点的距离(distance)。

  14、角∠(angle)也是一种基本的几何图形。

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

  16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角。

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等。

初一数学上册知识点总结24

  1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

  2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

  3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠———————。

  4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式。

  单项式的.系数:是指单项式中的数字因数;(不要漏负号和分母)

  单项数的次数:是指单项式中所有字母的指数的和。(注意指数1)

  5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式。特别注意多项式的项包括它前面的性质符号。它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

初一数学上册知识点总结25

  1、相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:

  ⑴相反数是成对出现的;

  ⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2、相反数的性质与判定

  ⑴、何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3、相反数的'几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4、相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“—”即可求得(如:5的相反数是—5);

  ⑵求多个数的和或差的相反数时,要用括号括起来再添“—”,然后化简(如;5a+b的相反数是—(5a+b)。化简得—5a—b);

  ⑶求前面带“—”的单个数,也应先用括号括起来再添“—”,然后化简(如:—5的相反数是—(—5),化简得5)

  5、相反数的表示方法

  ⑴一般地,数a的相反数是—a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,—a<0(正数的相反数是负数)

  当a<0时,—a>0(负数的相反数是正数)

  当a=0时,—a=0,(0的相反数是0)

初一数学上册知识点总结26

  代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式)

  1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。

  (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

  (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

  2、多项式

  (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

  (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

  (3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  在做多项式的排列的题时注意:

  (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a、先确认按照哪个字母的指数来排列。

  b、确定按这个字母降幂排列,还是升幂排列。

  3、整式:单项式和多项式统称为整式。

  4、列代数式的几个注意事项

  (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;

  (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。

  初中数学实数知识点

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的.平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

【初一数学上册知识点总结】相关文章:

初一数学上册知识点总结归纳09-06

初一数学上册期末知识点总结08-20

初一上册数学知识点总结05-21

语文初一上册知识点总结09-29

初一上册生物知识点总结05-21

初一英语上册知识点总结01-15

初一的数学知识点总结05-30

人教版数学上册知识点总结03-11

(精华)初一上册生物知识点总结05-21