(必备)初一数学知识点总结
总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结吧。如何把总结做到重点突出呢?以下是小编为大家收集的初一数学知识点总结 ,欢迎大家分享。

初一数学知识点总结 1
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的.各角都相等,并且每一个角都等于60
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
初一数学知识点总结 2
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的'数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2. 设:设未知数(可分直接设法,间接设法)
3. 列:根据题意列方程.
4. 解:解出所列方程.
5. 检:检验所求的解是否符合题意.
6. 答:写出答案(有单位要注明答案)
初一数学知识点总结 3
有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加,取绝对值较大的.符号,并用较大的绝对值减去较小的绝对值;
3、一个数与0相加,仍得这个数。
有理数加法的运算律
1、加法的交换律:a+b=b+a;
2、加法的结合律:(a+b)+c=a+(b+c)
有理数减法法则
减去一个数,等于加上这个数的相反数;即a—b=a+(—b)
有理数乘法法则
1、两数相乘,同号为正,异号为负,并把绝对值相乘;
2、任何数同零相乘都得零;
3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
初一数学知识点总结 4
第一章:有理数
★0既不是正数,也不是负数。0是正数和负数的分界。★整数的概念:正整数、0、负整数统称为整数。★分数的概念:正负数和负分数统称为分数。★有理数的概念:整数和分数统称为有理数。
★数轴的概念:规定了原点、正方向、单位长度的一条直线叫数轴。
(1)在直线上任意取一点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,
依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3。
★相反数的概念:只有符号不同的两个数叫做互为相反数。0的相反数是0。互为相反数的两个点关于原点对称。
★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。记作a。
由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
★有理数比较大小:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。所以由这个规定可知:(1)正数大于0,0大于负数;正数大于负数;(2)两个负数,绝对值大的反而小。
备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。
★有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍是这个数。
★有理数的加法中,两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a.★有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。【结合原则:同号结合;同分母结合;互为相反数结合;凑整结合。】
★有理数减法法则:减去一个数,就等于加上这个数的相反数。即:a-b=a+(-b).
★有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
备注:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
★有理数中仍然有:乘积是1的两个数互为倒数。
★一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变。乘法交换率:abba;三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)ca(bc)。
★一般地,一个数同两个数的和相乘,等于把这个数分别同中两个数相乘,再把积相加。分配律:a(bc)abac
★有理数除法法则:除以一个不等于0的数,等于乘上这个数的倒数。
备注:从有理数除法法则容易得出:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
★有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a的n次方也可以读作a的n次幂。
备注:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。0的任何正整数次幂都是0。
★有理数的混合运算,应注意以下运算顺序:先乘方,再乘除,最后加减。2。同级运算,从左到右依次计算。3。如有括号,先做括号内的运算,按小括号、中括号、大括号依次计算。
★科学计数法:把一个大于10的数表示成ax10(其中a是整数数位只有一位的数,n是正整数)
★近似数与准确数的接近程度,可以用精确度表示。
★有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章:整式的加减(为一元一次方程的学习打下基础)
◆单项式概念:比如100t、a的平方、2.5x、vt,-n,它们都是数或者字母的积,像这样的式子叫做单项式。单独的一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。
◆一个单项式中,所有字母的指数的和叫做这个单项式的次数。
◆多项式的概念:几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不存在字母的项叫做常数项。
◆多项式里次数最高项的次数,叫做这个多项式的次数。◆整式的概念:单项式与多项式统称整式。
◆同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
◆把多项式中的同类项合并成一项,叫做合并同类项。
◆合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母部分不变。◆去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
第三章:一元一次方程
▲含有未知数的等式叫方程(equation)。
▲使方程左右两边相等的未知数的值,叫做方程的解(solution)。▲只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。▲等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。
2、等式;两边乘同一个数,或除以同一个不为0的数,结果仍相等。▲用一元一次方程分析和解决实际问题的基本过程如下:
(实际问题)设未知数,列方程数学问题(一元一次方程)解方程(数学问题的解)检验(实际问题的答案)。
▲解方程的具体步骤:1、去分母(方程两边同乘各分母的最小公倍数);2、去括号(去括号法则);3、移项(定义);4、合并同类项(法则,同类项的定义);5、系数化为1。
▲实际问题与一元一次方程:一元一次方程是最简单的方程。运用方程解决问题的关键是分析问题中的数量关系,找出其中的相等关系,并由此列出方程。
第四章:图形认识的初步
※我们把从实物中抽象出的各种图形统称为几何图形。几何图形是数学研究的主要对象
之一。几何图形又分为立体图形和平面图形。
※长方体、正方体、圆柱、圆锥、球、棱锥等都是几何体。几何体也简称体(solid)。包围着体的是面(surface)。面有平面和曲面。
※几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。※经过两点有一条直线,并且只有一条直线。简述:两点确定一条直线。※直线一般用1个小写字母表示或者用直线上的两个大写字母表示。※射线和线段都是直线的一部分。类似于直线的表示。
※两点的'所有连线中,线段最短。简述:两点之间,线段最短。※连接两点间的线段的长度,叫做中两点的距离(distance)。
※在国际单位制中,长度的基本单位是米(m)。常用的单位还有千米、分米、厘米、毫米、微米等。
1纳米等于十亿分之一米。
※在天文学上,常用天文单位和光年计算星体间的距离。1天文单位是地球到太阳的平812
均距离,约1.5x10千米,1光年就是光1年走过的距离,约等于9.46x10千米。
※航海上经常用到的长度单位海里(1海里=1852米);※有公共端点的两条射线组成的图形叫做角(angle)。这个公共点叫做角的顶点,这两条射线是角的两条边。
※我们常用量角器量角,度(degree)、分、秒是常用的角的度量单位。
※角的度、分、秒是60进制的。以度、分、秒为单位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的经纬仪。
※从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
※余角(complementaryangle):如果两个角的和等于90度(直角),就说中这两个角互为余角,即其中每一个角是另一个角的余角。余角的性质:等角的余角相等。
※补角(supplementaryangle):如果两个角的和等于180度(平角),就说这两个角互为补角,其中一个角是另一个角的补角。补角的性质:等角的补角相等。
※上北下南;左西右东。西北,即是北偏西45度。
第五章平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
四.用尺规作线段和角※
1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
初一数学知识点总结 5
1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).
5、几何体简称为体(solid).
6、包围着体的是面(surface),面有平的面和曲的面两种.
7、面与面相交的地方形成线(line),线和线相交的地方是点(point).
8、点动成面,面动成线,线动成体.
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance).
14、角∠(angle)也是一种基本的几何图形.
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的`角,记作1″.
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等.
初一数学知识点总结 6
尽快地掌握科学知识,迅速提高学习能力,由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!
一、目标与要求
1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3.培养学生获取信息,分析问题,处理问题的能力。
二、重点
从实际问题中寻找相等关系;
建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。
三、难点
从实际问题中寻找相等关系;
分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。
四、知识点、概念总结
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的`标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。
3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
4.等式的性质:
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项
(1)依据:乘法分配律
(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项
(3)合并时次数不变,只是系数相加减。
6.移项
(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质
(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a0)的形式;
(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
8.同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!
初一数学知识点总结 7
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的.线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
初一数学知识点总结 8
一、隋唐科举制度:
北:P20科举制是通过分科考试选拔官吏的制度。隋唐时期创立并完善了科举制度,强调以才能作为选官标准的原则。
二、武则天
北:P13—15武则天是我国历的女皇帝。
武则天统治时期,不拘一格选拔普通地主中的优秀人才。注重减轻农民负担,采取各种措施促进社会生产断续发。当时,人口明显增长,边疆得到巩固和开拓,史称有“贞观遗风”,为唐朝全盛时期的到来奠定了基础。
三、“开元盛世”
北:P15唐玄宗统治前期政局稳定,经济繁荣,被誉为“开元盛世”。
四、唐与吐蕃的交往:
P28吐蕃是今藏族祖先。文成公主入藏与松赞干布联姻,密切了唐蕃经济文化的交流。
五、遣唐使、玄奘西行、鉴真东渡
(一)遣唐使
北:P32遣唐使是日本政府派遣到唐朝进行文化交流的使团;遣唐使把唐朝的典章制度、天文历法、书法艺术、建筑艺术以及生活习俗等带回本国,对日本的生产、生活与社会发展产生了深远影响。
(二)鉴真东渡
北:P33鉴真到达日本除讲授佛经,还详细介绍中斩医药、建筑、雕塑、文学、书法、绘画等技术知识,对中日经济文化交流做出了杰出贡献。(识图P34鉴真东渡示意图)
(三)玄奘西行
北:P35玄奘是唐朝的高僧,为了求取佛经精义,他西行前往佛教圣地天竺。玄奘是第一个系统地把天竺佛教、历史、地理、风土人情等记录下来并介绍到中国的人。(玄奘西行示意图)
六、列举“贞观之治”的主要内容,评价唐太宗:略
经济重心的南移和民族关系的发展
一、中国古代经济重心的南移
北:P64魏晋南北朝以来,全国经济重心出现了南移的趋势。两宋时全国的经济重心从黄河流域转移到长江流域。
二、成吉思汗统一蒙古和忽必烈建立元朝的史实
北:P75—7612,蒙古贵族在斡难河源召开大会,推举铁木真为蒙古族的首领,尊称为“成吉思汗”,建立蒙古政权1260年,成吉思汗之孙忽必烈继承蒙古汗位。1271年,忽必烈改国号为元,建立元朝,第二年定都大都。忽必烈为元世祖。
历史学习方法技巧
一、学会听课
用新的方式听老师复习阶段的辅导课。复习阶段听老师讲课,听什么?听思路,听提炼,听挖掘,听补充、听小结,听解题方法的指导。听课过程中,一有所得,当即记于课本天头地脚处,以供备忘,正如“好记性不如烂笔头”。
二、学会课后自己整理教材
在历史能力测试中,分成两个部分:一是闭卷的选择题;一是开卷的材料分析题。主要考察同学对历史史实的认知和迁移以及运用基本的历史方法解决问题的能力,包括对历史知识的识记、理解和运用。千变万化的`能力测试题都离不开考察你对教材的认识。所以,要以不变应万变,抓住教材为本。在整理教材的过程中注意以下几方面:
(1)知识主干化。在知识结构的框架下,记住其中的主干知识,不要孤立的记忆它。所谓的主干知识,是指按课标要求掌握的重大历史事件(或人物)的内容和影响(或作用)。表现在课文中,即是每一课子目的核心内容。这些内容不多,记住的目的是为了突出重点,并能由此而链接更多的知识点,提高对知识的积累量,进而提高分析问题的能力和效力,以及准确性。这部分往往会在闭卷的选择题部分来考察。
(2)知识线索化。在对每一单元知识结构整理的基础上,联系比较上一单元和下一单元的知识,整理出本册书的知识线索,这需要在老师的引导下完成。在知识线索下,加强对知识因果关系的理解,有的事件是一因多果,有的是多因一果,有的是一因多果等等,注意全面、辨证、多角度地分析。并要注意这些历史对今天社会建设中的启示。这类知识一般在开卷部分以材料为载体多重设问来体现。有的同学往往认为历史考试中有很大部分是开卷的,所以没必要抓教材,殊不知,在考试中时间紧,如果对教材没整体认识和熟悉,根本没法在短短的时间内完成检测内容。因此,教材知识的线索化这个环节尤其重要。
(3)注意教材中的插图、文献材料和注释和课文中补充的小字。课文中的插图:可以用来加深对课文中相关知识的理解。首先,要善于观察,抓住其中隐含的历史信息。其次,掌握一些识图的技巧,如,注意地形图中的图示含义、线条的走向和古今地名国名的变化;了解人物图中的神态;发现景物图中的细节和特征等。文献材料:一般在课文中用黑体字表现,它是史实来源的第一手材料或第二手材料,学习时,注意其出处,联系课文相关内容,解读其中语句的含义,这样能帮助我们提高阅读能力,形成论从史出、史证结合的学习方法。小字部分往往容易在检测中以材料的形式出现,考查学生的归纳和知识迁移能力。这个环节的培养有利于我们在考场上把没见过的材料与我们所学的知识结合起来。
三、注意历史复习中的记忆方法。
许多历史知识需要记忆。有好的记忆方法,就能收到事半功倍的效果。历史知识的记忆法很多,最常用最有效的记忆方法有以下几种:浓缩记忆法、图示记忆法、数字归纳记忆法、联想比较记忆法。
初一数学知识点总结 9
平面直角坐标系
1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
3.原点的坐标是(0,0);
纵坐标相同的点的连线平行于x轴;
横坐标相同的点的连线平行于y轴;
x轴上的点的`纵坐标为0,表示为(x,0);
y轴上的点的横坐标为0,表示为(0,y)。
4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
5.几个象限内点的特点:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)关于原点对称的点是(—x,—y);
(x,y)关于x轴对称的点是(x,—y);
(x,y)关于y轴对称的点是(—x,y)。
7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;
点P(x,y)到y轴的距离是︱x︳。
8.在第一、三象限角平分线上的点的坐标是(m,m);
在第二、四象限叫平分线上的点的坐标是(m,—m)。
不等式与不等式组
(1)不等式
用不等号(,≥,≤,≠)连接的式子叫做不等式。
(2)不等式的性质
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
(3)一元一次不等式
用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。
(4)一元一次不等式组
一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。
点、线、面、体知识点
1.几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
2.点动成线,线动成面,面动成体。
点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:
(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
角的种类
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。
初一数学知识点总结 10
有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的.。
初中数学知识点:因式分解的一般步骤
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
初一数学知识点总结 11
相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.
(4)规律方法总结:求一个数的相反数的'方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.
2代数式求值
(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
题型简单总结以下三种:
①已知条件不化简,所给代数式化简;
②已知条件化简,所给代数式不化简;
③已知条件和所给代数式都要化简.
3由三视图判断几何体
(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;
④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法
初一数学知识点总结 12
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:
含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的'方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
初一数学知识点总结 13
初一下册知识点总结
1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4.零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9.同类项:所含字母相同,并且相同字母的指数也相同的`单项式是同类项。
10.合并同类项法则:系数相加,字母与字母的指数不变。
11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
平面几何部分
1、补角重要性质:同角或等角的补角相等.
余角重要性质:同角或等角的余角相等.
2、①直线公理:过两点有且只有一条直线.
线段公理:两点之间线段最短.
②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.
3、三角形的内角和等于180
三角形的一个外角等于与它不相邻的两个内角的和
三角形的一个外角大于与它不相邻的任何一个内角
4、n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形
5、n边形的内角和公式:180(n-2); 多边形的外角和等于360
6、判断三条线段能否组成三角形:
①a+b>c(a b为最短的两条线段)②a-b
7、第三边取值范围:
a-b
8、对应周长取值范围:
若两边分别为a,b则周长的取值范围是 2a
如两边分别为5和7则周长的取值范围是 14
9、相关命题:
(1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
(2) 锐角三角形中最大的锐角的取值范围是60≤X
(3)任意一个三角形两角平分线的夹角=90+第三角的一半。
(4) 钝角三角形有两条高在外部。
(5) 全等图形的大小(面积、周长)、形状都相同。
(6) 面积相等的两个三角形不一定是全等图形。
(7) 三角形具有稳定性。
(8) 角平分线到角的两边距离相等。
(9)有一个角是60的等腰三角形是等边三角形。
初一数学知识点总结 14
1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数。
3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。
4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5、多项式里次数项的次数,叫做这个多项式的次数。
6、把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的.符号与原来的符号相同。
8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
初一数学知识点总结 15
第二章:整式的加减
1、单项式:;单独的一个数或一个字母也是单项式
2、系数:;
3、单项式的次数:;
4、多项式:;
叫做多项式的项;的项叫做常数项。
5、多项式的次数:;
6、整式:;
7、同类项:;
8、把多项式中的同类项合并成一项,叫做合并同类项;
合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。
9、去括号:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反
10、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项
第三章:一次方程(组)
一、方程的有关概念
1、方程的概念:
(1)含有未知数的等式叫方程。
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。
2、等式的基本性质:
(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。若a=b,则a+c=b+c或a–c=b–c。
(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。若a=b,则ac=bc或
二、解方程
1、移项的有关概念:
把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。这个法则是根据等式的性质1推出来的,是解方程的依据。把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。
2、解一元一次方程的步骤:
解一元一次方程的'步骤
主要依据
1、去分母
等式的性质2
2、去括号
去括号法则、乘法分配律
3、移项
等式的性质1
4、合并同类项
合并同类项法则
5、系数化为1
等式的性质2
6、检验
3、二元一次方程组
(1)将二元一次方程用含有一个未知数的代数式表示另一个未知数;
(2)解二元一次方程组的指导思想是转化的思想;
(3)解二元一次方程组的方法有:加减消元法;代入消元法;
二、列方程解应用题
1、列方程解应用题的一般步骤:
(1)将实际问题抽象成数学问题;
(2)分析问题中的已知量和未知量,找出等量关系;
(3)设未知数,列出方程;
(4)解方程;
(5)检验并作答。
2、一些实际问题中的规律和等量关系:
(1)几种常用的面积公式:
长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;
梯形面积公式:S=,a,b为上下底边长,h为梯形的高,S为梯形面积;
圆形的面积公式:,r为圆的半径,S为圆的面积;
三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。
(2)几种常用的周长公式:
长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长。
正方形的周长:L=4a,a为正方形的边长,L为周长。
圆:L=2πr,r为半径,L为周长。
【初一数学知识点总结 】相关文章:
初一的数学知识点总结01-04
初一数学知识点总结05-23
初一数学上册知识点总结05-21
初一上数学知识点总结03-02
初一数学基本知识点总结09-02
初一数学上册知识点总结归纳05-03
初一数学知识点总结归纳大全05-02
初一上册数学知识点总结05-21
初一政治知识点总结07-01